generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathtest_modeling_value_head.py
517 lines (413 loc) · 22.5 KB
/
test_modeling_value_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import sys
import tempfile
import unittest
import torch
from parameterized import parameterized
from transformers import AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, GenerationConfig
from trl import AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead, create_reference_model
ALL_CAUSAL_LM_MODELS = [
"trl-internal-testing/tiny-BloomForCausalLM",
"trl-internal-testing/tiny-CohereForCausalLM",
"trl-internal-testing/tiny-DbrxForCausalLM",
"trl-internal-testing/tiny-FalconMambaForCausalLM",
"trl-internal-testing/tiny-Gemma2ForCausalLM",
"trl-internal-testing/tiny-GemmaForCausalLM",
"trl-internal-testing/tiny-GPT2LMHeadModel",
"trl-internal-testing/tiny-GPTNeoXForCausalLM",
"trl-internal-testing/tiny-LlamaForCausalLM-3.1",
"trl-internal-testing/tiny-LlamaForCausalLM-3.2",
"trl-internal-testing/tiny-LlamaForCausalLM-3",
"trl-internal-testing/tiny-MistralForCausalLM-0.1",
"trl-internal-testing/tiny-MistralForCausalLM-0.2",
"trl-internal-testing/tiny-OPTForCausalLM",
"trl-internal-testing/tiny-Phi3ForCausalLM",
"trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
]
ALL_SEQ2SEQ_MODELS = [
"trl-internal-testing/tiny-T5ForConditionalGeneration",
"trl-internal-testing/tiny-BartModel",
]
class BaseTester:
class VHeadModelTester(unittest.TestCase):
all_model_names = None
trl_model_class = None
transformers_model_class = None
def test_value_head(self):
r"""
Test if the v-head is added to the model successfully
"""
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
self.assertTrue(hasattr(model, "v_head"))
def test_value_head_shape(self):
r"""
Test if the v-head has the correct shape
"""
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
self.assertEqual(model.v_head.summary.weight.shape[0], 1)
def test_value_head_init_random(self):
r"""
Test if the v-head has been randomly initialized.
We can check that by making sure the bias is different
than zeros by default.
"""
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
self.assertFalse(
torch.allclose(model.v_head.summary.bias, torch.zeros_like(model.v_head.summary.bias))
)
def test_value_head_not_str(self):
r"""
Test if the v-head is added to the model successfully, by passing a non `PretrainedModel`
as an argument to `from_pretrained`.
"""
for model_name in self.all_model_names:
pretrained_model = self.transformers_model_class.from_pretrained(model_name)
model = self.trl_model_class.from_pretrained(pretrained_model)
self.assertTrue(hasattr(model, "v_head"))
@unittest.skipIf(sys.platform.startswith("win"), "Skipping on Windows")
def test_from_save_trl(self):
"""
Test if the model can be saved and loaded from a directory and get the same weights
Including the additional modules (e.g. v_head)
"""
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
model_from_save = self.trl_model_class.from_pretrained(tmp_dir)
# Check if the weights are the same
for key in model_from_save.state_dict():
self.assertTrue(torch.allclose(model_from_save.state_dict()[key], model.state_dict()[key]))
@unittest.skipIf(sys.platform.startswith("win"), "Skipping on Windows")
def test_from_save_trl_sharded(self):
"""
Test if the model can be saved and loaded from a directory and get the same weights - sharded case
"""
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
model_from_save = self.trl_model_class.from_pretrained(tmp_dir)
# Check if the weights are the same
for key in model_from_save.state_dict():
self.assertTrue(torch.allclose(model_from_save.state_dict()[key], model.state_dict()[key]))
@unittest.skipIf(sys.platform.startswith("win"), "Skipping on Windows")
def test_from_save_transformers_sharded(self):
"""
Test if the model can be saved and loaded using transformers and get the same weights - sharded case
"""
for model_name in self.all_model_names:
transformers_model = self.trl_model_class.transformers_parent_class.from_pretrained(model_name)
trl_model = self.trl_model_class.from_pretrained(model_name)
with tempfile.TemporaryDirectory() as tmp_dir:
trl_model.save_pretrained(tmp_dir, max_shard_size="1MB")
transformers_model_from_save = self.trl_model_class.transformers_parent_class.from_pretrained(
tmp_dir
)
# Check if the weights are the same
for key in transformers_model.state_dict():
self.assertTrue(
torch.allclose(
transformers_model_from_save.state_dict()[key], transformers_model.state_dict()[key]
)
)
@unittest.skipIf(sys.platform.startswith("win"), "Skipping on Windows")
def test_from_save_transformers(self):
"""
Test if the model can be saved and loaded using transformers and get the same weights.
We override the test of the super class to check if the weights are the same.
"""
for model_name in self.all_model_names:
transformers_model = self.trl_model_class.transformers_parent_class.from_pretrained(model_name)
trl_model = self.trl_model_class.from_pretrained(model_name)
with tempfile.TemporaryDirectory() as tmp_dir:
trl_model.save_pretrained(tmp_dir)
transformers_model_from_save = self.trl_model_class.transformers_parent_class.from_pretrained(
tmp_dir
)
# Check if the weights are the same
for key in transformers_model.state_dict():
self.assertTrue(
torch.allclose(
transformers_model_from_save.state_dict()[key], transformers_model.state_dict()[key]
)
)
# Check if the trl model has the same keys as the transformers model
# except the v_head
for key in trl_model.state_dict():
if "v_head" not in key:
self.assertIn(key, transformers_model.state_dict())
# check if the weights are the same
self.assertTrue(
torch.allclose(trl_model.state_dict()[key], transformers_model.state_dict()[key])
)
# check if they have the same modules
self.assertEqual(
set(transformers_model_from_save.state_dict().keys()),
set(transformers_model.state_dict().keys()),
)
class CausalLMValueHeadModelTester(BaseTester.VHeadModelTester, unittest.TestCase):
"""
Testing suite for v-head models.
"""
all_model_names = ALL_CAUSAL_LM_MODELS
trl_model_class = AutoModelForCausalLMWithValueHead
transformers_model_class = AutoModelForCausalLM
def tearDown(self):
# free memory
gc.collect()
def test_inference(self):
r"""
Test if the model can be used for inference and outputs 3 values
- logits, loss, and value states
"""
EXPECTED_OUTPUT_SIZE = 3
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
outputs = model(input_ids)
# Check if the outputs are of the right size - here
# we always output 3 values - logits, loss, and value states
self.assertEqual(len(outputs), EXPECTED_OUTPUT_SIZE)
def test_dropout_config(self):
r"""
Test if we instantiate a model by adding `summary_drop_prob` to the config
it will be added to the v_head
"""
for model_name in self.all_model_names:
pretrained_model = self.transformers_model_class.from_pretrained(model_name)
pretrained_model.config.summary_dropout_prob = 0.5
model = self.trl_model_class.from_pretrained(pretrained_model)
# Check if v head of the model has the same dropout as the config
self.assertEqual(model.v_head.dropout.p, pretrained_model.config.summary_dropout_prob)
def test_dropout_kwargs(self):
r"""
Test if we instantiate a model by adding `summary_drop_prob` to the config
it will be added to the v_head
"""
for model_name in self.all_model_names:
v_head_kwargs = {"summary_dropout_prob": 0.5}
model = self.trl_model_class.from_pretrained(model_name, **v_head_kwargs)
# Check if v head of the model has the same dropout as the config
self.assertEqual(model.v_head.dropout.p, 0.5)
model = self.trl_model_class.from_pretrained(model_name, summary_dropout_prob=0.5)
# Check if v head of the model has the same dropout as the config
self.assertEqual(model.v_head.dropout.p, 0.5)
@parameterized.expand(ALL_CAUSAL_LM_MODELS)
def test_generate(self, model_name):
r"""
Test if `generate` works for every model
"""
generation_config = GenerationConfig(max_new_tokens=9)
model = self.trl_model_class.from_pretrained(model_name)
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
# Just check if the generation works
_ = model.generate(input_ids, generation_config=generation_config)
def test_transformers_bf16_kwargs(self):
r"""
Test if the transformers kwargs are correctly passed
Here we check that loading a model in half precision works as expected, i.e. the weights of
the `pretrained_model` attribute is loaded in half precision and you can run a dummy
forward pass without any issue.
"""
for model_name in self.all_model_names:
trl_model = self.trl_model_class.from_pretrained(model_name, torch_dtype=torch.bfloat16)
lm_head_namings = ["lm_head", "embed_out", "output_layer"]
self.assertTrue(
any(hasattr(trl_model.pretrained_model, lm_head_naming) for lm_head_naming in lm_head_namings),
"Can't test the model because it doesn't have any of the expected lm_head namings",
)
for lm_head_naming in lm_head_namings:
if hasattr(trl_model.pretrained_model, lm_head_naming):
self.assertEqual(getattr(trl_model.pretrained_model, lm_head_naming).weight.dtype, torch.bfloat16)
dummy_input = torch.LongTensor([[0, 1, 0, 1]])
# check dummy forward pass works in half precision
_ = trl_model(dummy_input)
@unittest.skip("This test needs to be run manually due to HF token issue.")
def test_push_to_hub(self):
for model_name in self.all_model_names:
model = AutoModelForCausalLMWithValueHead.from_pretrained(model_name)
if "sharded" in model_name:
model.push_to_hub(model_name + "-ppo", use_auth_token=True, max_shard_size="1MB")
else:
model.push_to_hub(model_name + "-ppo", use_auth_token=True)
model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(model_name + "-ppo")
# check all keys
self.assertEqual(model.state_dict().keys(), model_from_pretrained.state_dict().keys())
for name, param in model.state_dict().items():
self.assertTrue(
torch.allclose(param, model_from_pretrained.state_dict()[name]),
f"Parameter {name} is not the same after push_to_hub and from_pretrained",
)
class Seq2SeqValueHeadModelTester(BaseTester.VHeadModelTester, unittest.TestCase):
"""
Testing suite for v-head models.
"""
all_model_names = ALL_SEQ2SEQ_MODELS
trl_model_class = AutoModelForSeq2SeqLMWithValueHead
transformers_model_class = AutoModelForSeq2SeqLM
def tearDown(self):
# free memory
gc.collect()
def test_inference(self):
r"""
Test if the model can be used for inference and outputs 3 values
- logits, loss, and value states
"""
EXPECTED_OUTPUT_SIZE = 3
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
decoder_input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
outputs = model(input_ids, decoder_input_ids=decoder_input_ids)
# Check if the outputs are of the right size - here
# we always output 3 values - logits, loss, and value states
self.assertEqual(len(outputs), EXPECTED_OUTPUT_SIZE)
def test_dropout_config(self):
r"""
Test if we instantiate a model by adding `summary_drop_prob` to the config
it will be added to the v_head
"""
for model_name in self.all_model_names:
pretrained_model = self.transformers_model_class.from_pretrained(model_name)
pretrained_model.config.summary_dropout_prob = 0.5
model = self.trl_model_class.from_pretrained(pretrained_model)
# Check if v head of the model has the same dropout as the config
self.assertEqual(model.v_head.dropout.p, pretrained_model.config.summary_dropout_prob)
def test_dropout_kwargs(self):
r"""
Test if we instantiate a model by adding `summary_drop_prob` to the config
it will be added to the v_head
"""
for model_name in self.all_model_names:
v_head_kwargs = {"summary_dropout_prob": 0.5}
model = self.trl_model_class.from_pretrained(model_name, **v_head_kwargs)
# Check if v head of the model has the same dropout as the config
self.assertEqual(model.v_head.dropout.p, 0.5)
model = self.trl_model_class.from_pretrained(model_name, summary_dropout_prob=0.5)
# Check if v head of the model has the same dropout as the config
self.assertEqual(model.v_head.dropout.p, 0.5)
@parameterized.expand(ALL_SEQ2SEQ_MODELS)
def test_generate(self, model_name):
r"""
Test if `generate` works for every model
"""
generation_config = GenerationConfig(max_new_tokens=9)
model = self.trl_model_class.from_pretrained(model_name)
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
decoder_input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
# Just check if the generation works
_ = model.generate(input_ids, decoder_input_ids=decoder_input_ids, generation_config=generation_config)
def test_raise_error_not_causallm(self):
# Test with a model without a LM head
model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration"
# This should raise a ValueError
with self.assertRaises(ValueError):
pretrained_model = AutoModel.from_pretrained(model_id)
_ = self.trl_model_class.from_pretrained(pretrained_model)
@unittest.skip("This test needs to be run manually due to HF token issue.")
def test_push_to_hub(self):
for model_name in self.all_model_names:
model = self.trl_model_class.from_pretrained(model_name)
if "sharded" in model_name:
model.push_to_hub(model_name + "-ppo", use_auth_token=True, max_shard_size="1MB")
else:
model.push_to_hub(model_name + "-ppo", use_auth_token=True)
model_from_pretrained = self.trl_model_class.from_pretrained(model_name + "-ppo")
# check all keys
self.assertEqual(model.state_dict().keys(), model_from_pretrained.state_dict().keys())
for name, param in model.state_dict().items():
self.assertTrue(
torch.allclose(param, model_from_pretrained.state_dict()[name]),
f"Parameter {name} is not the same after push_to_hub and from_pretrained",
)
def test_transformers_bf16_kwargs(self):
r"""
Test if the transformers kwargs are correctly passed
Here we check that loading a model in half precision works as expected, i.e. the weights of
the `pretrained_model` attribute is loaded in half precision and you can run a dummy
forward pass without any issue.
"""
for model_name in self.all_model_names:
trl_model = self.trl_model_class.from_pretrained(model_name, torch_dtype=torch.bfloat16)
lm_head_namings = self.trl_model_class.lm_head_namings
self.assertTrue(
any(hasattr(trl_model.pretrained_model, lm_head_naming) for lm_head_naming in lm_head_namings)
)
for lm_head_naming in lm_head_namings:
if hasattr(trl_model.pretrained_model, lm_head_naming):
self.assertTrue(getattr(trl_model.pretrained_model, lm_head_naming).weight.dtype == torch.bfloat16)
dummy_input = torch.LongTensor([[0, 1, 0, 1]])
# check dummy forward pass works in half precision
_ = trl_model(input_ids=dummy_input, decoder_input_ids=dummy_input)
class ReferenceModelTest(unittest.TestCase):
def setUp(self):
self.model = AutoModelForCausalLMWithValueHead.from_pretrained("trl-internal-testing/tiny-GPT2LMHeadModel")
self.test_input = torch.tensor([[0, 1, 2, 3]])
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=1)
self.layer_format = "pretrained_model.transformer.h.{layer}.attn.c_attn.weight"
def test_independent_reference(self):
layer_0 = self.layer_format.format(layer=0)
layer_1 = self.layer_format.format(layer=1)
ref_model = create_reference_model(self.model)
first_layer_before = self.model.get_parameter(layer_0).data.clone()
last_layer_before = self.model.get_parameter(layer_1).data.clone() # the model only has 2 layers
first_ref_layer_before = ref_model.get_parameter(layer_0).data.clone()
last_ref_layer_before = ref_model.get_parameter(layer_1).data.clone()
output = self.model(input_ids=self.test_input, labels=self.test_input)
output[1].backward()
self.optimizer.step()
first_layer_after = self.model.get_parameter(layer_0).data.clone()
last_layer_after = self.model.get_parameter(layer_1).data.clone()
first_ref_layer_after = ref_model.get_parameter(layer_0).data.clone()
last_ref_layer_after = ref_model.get_parameter(layer_1).data.clone()
# before optimization ref and model are identical
self.assertTrue((first_layer_before == first_ref_layer_before).all())
self.assertTrue((last_layer_before == last_ref_layer_before).all())
# ref model stays identical after optimization
self.assertTrue((first_ref_layer_before == first_ref_layer_after).all())
self.assertTrue((last_ref_layer_before == last_ref_layer_after).all())
# optimized model changes
self.assertFalse((first_layer_before == first_layer_after).all())
self.assertFalse((last_layer_before == last_layer_after).all())
def test_shared_layers(self):
layer_0 = self.layer_format.format(layer=0)
layer_1 = self.layer_format.format(layer=1)
ref_model = create_reference_model(self.model, num_shared_layers=1)
first_layer_before = self.model.get_parameter(layer_0).data.clone()
second_layer_before = self.model.get_parameter(layer_1).data.clone()
first_ref_layer_before = ref_model.get_parameter(layer_0).data.clone()
second_ref_layer_before = ref_model.get_parameter(layer_1).data.clone()
output = self.model(input_ids=self.test_input, labels=self.test_input)
output[1].backward()
self.optimizer.step()
first_layer_after = self.model.get_parameter(layer_0).data.clone()
second_layer_after = self.model.get_parameter(layer_1).data.clone()
first_ref_layer_after = ref_model.get_parameter(layer_0).data.clone()
second_ref_layer_after = ref_model.get_parameter(layer_1).data.clone()
# before optimization ref and model are identical
self.assertTrue((first_layer_before == first_ref_layer_before).all())
self.assertTrue((second_layer_before == second_ref_layer_before).all())
# ref model stays identical after optimization
self.assertTrue((first_ref_layer_before == first_ref_layer_after).all())
self.assertTrue((second_ref_layer_before == second_ref_layer_after).all())
# first layer of optimized model stays the same
self.assertTrue((first_layer_before == first_layer_after).all())
# other layers in optimized model change
self.assertFalse((second_layer_before == second_layer_after).all())