Skip to content

Latest commit

 

History

History

instance-segmentation

Instance Segmentation Examples

This directory contains two scripts that demonstrate how to fine-tune MaskFormer and Mask2Former for instance segmentation using PyTorch. For other instance segmentation models, such as DETR and Conditional DETR, the scripts need to be adjusted to properly handle input and output data.

Content:

PyTorch Version with Trainer

This example is based on the script run_instance_segmentation.py.

The script uses the 🤗 Trainer API to manage training automatically, including distributed environments.

Here, we show how to fine-tune a Mask2Former model on a subsample of the ADE20K dataset. We created a small dataset with approximately 2,000 images containing only "person" and "car" annotations; all other pixels are marked as "background."

Here is the label2id mapping for this dataset:

label2id = {
    "background": 0,
    "person": 1,
    "car": 2,
}

Since the background label is not an instance and we don't want to predict it, we will use do_reduce_labels to remove it from the data.

Run the training with the following command:

python run_instance_segmentation.py \
    --model_name_or_path facebook/mask2former-swin-tiny-coco-instance \
    --output_dir finetune-instance-segmentation-ade20k-mini-mask2former \
    --dataset_name qubvel-hf/ade20k-mini \
    --do_reduce_labels \
    --image_height 256 \
    --image_width 256 \
    --do_train \
    --fp16 \
    --num_train_epochs 40 \
    --learning_rate 1e-5 \
    --lr_scheduler_type constant \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 2 \
    --dataloader_num_workers 8 \
    --dataloader_persistent_workers \
    --dataloader_prefetch_factor 4 \
    --do_eval \
    --evaluation_strategy epoch \
    --logging_strategy epoch \
    --save_strategy epoch \
    --save_total_limit 2 \
    --push_to_hub

The resulting model can be viewed here. Always refer to the original paper for details on training hyperparameters. To improve model quality, consider:

  • Changing image size parameters (--image_height/--image_width)
  • Adjusting training parameters such as learning rate, batch size, warmup, optimizer, and more (see TrainingArguments)
  • Adding more image augmentations (we created a helpful HF Space to choose some)

You can also replace the model checkpoint.

PyTorch Version with Accelerate

This example is based on the script run_instance_segmentation_no_trainer.py.

The script uses 🤗 Accelerate to write your own training loop in PyTorch and run it on various environments, including CPU, multi-CPU, GPU, multi-GPU, and TPU, with support for mixed precision.

First, configure the environment:

accelerate config

Answer the questions regarding your training environment. Then, run:

accelerate test

This command ensures everything is ready for training. Finally, launch training with:

accelerate launch run_instance_segmentation_no_trainer.py \
    --model_name_or_path facebook/mask2former-swin-tiny-coco-instance \
    --output_dir finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer \
    --dataset_name qubvel-hf/ade20k-mini \
    --do_reduce_labels \
    --image_height 256 \
    --image_width 256 \
    --num_train_epochs 40 \
    --learning_rate 1e-5 \
    --lr_scheduler_type constant \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 2 \
    --dataloader_num_workers 8 \
    --push_to_hub

With this setup, you can train on multiple GPUs, log everything to trackers (like Weights and Biases, Tensorboard), and regularly push your model to the hub (with the repo name set to args.output_dir under your HF username). With the default settings, the script fine-tunes a Mask2Former model on the sample of ADE20K dataset. The resulting model can be viewed here.

Reload and Perform Inference

After training, you can easily load your trained model and perform inference as follows:

import torch
import requests
import matplotlib.pyplot as plt

from PIL import Image
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor

# Load image
image = Image.open(requests.get("http://farm4.staticflickr.com/3017/3071497290_31f0393363_z.jpg", stream=True).raw)

# Load model and image processor
device = "cuda"
checkpoint = "qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former"

model = Mask2FormerForUniversalSegmentation.from_pretrained(checkpoint, device_map=device)
image_processor = Mask2FormerImageProcessor.from_pretrained(checkpoint)

# Run inference on image
inputs = image_processor(images=[image], return_tensors="pt").to(device)
with torch.no_grad():
    outputs = model(**inputs)

# Post-process outputs
outputs = image_processor.post_process_instance_segmentation(outputs, target_sizes=[(image.height, image.width)])

print("Mask shape: ", outputs[0]["segmentation"].shape)
print("Mask values: ", outputs[0]["segmentation"].unique())
for segment in outputs[0]["segments_info"]:
    print("Segment: ", segment)
Mask shape:  torch.Size([427, 640])
Mask values:  tensor([-1.,  0.,  1.,  2.,  3.,  4.,  5.,  6.])
Segment:  {'id': 0, 'label_id': 0, 'was_fused': False, 'score': 0.946127}
Segment:  {'id': 1, 'label_id': 1, 'was_fused': False, 'score': 0.961582}
Segment:  {'id': 2, 'label_id': 1, 'was_fused': False, 'score': 0.968367}
Segment:  {'id': 3, 'label_id': 1, 'was_fused': False, 'score': 0.819527}
Segment:  {'id': 4, 'label_id': 1, 'was_fused': False, 'score': 0.655761}
Segment:  {'id': 5, 'label_id': 1, 'was_fused': False, 'score': 0.531299}
Segment:  {'id': 6, 'label_id': 1, 'was_fused': False, 'score': 0.929477}

Use the following code to visualize the results:

import numpy as np
import matplotlib.pyplot as plt

segmentation = outputs[0]["segmentation"].numpy()

plt.figure(figsize=(10, 10))
plt.subplot(1, 2, 1)
plt.imshow(np.array(image))
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(segmentation)
plt.axis("off")
plt.show()

Result

Note on Custom Data

Here is a short script demonstrating how to create your own dataset for instance segmentation and push it to the hub:

Note: Annotations should be represented as 3-channel images (similar to the scene_parsing_150 dataset). The first channel is a semantic-segmentation map with values corresponding to label2id, the second is an instance-segmentation map where each instance has a unique value, and the third channel should be empty (filled with zeros).

from datasets import Dataset, DatasetDict
from datasets import Image as DatasetImage

label2id = {
    "background": 0,
    "person": 1,
    "car": 2,
}

train_split = {
    "image": [<PIL Image 1>, <PIL Image 2>, <PIL Image 3>, ...],
    "annotation": [<PIL Image ann 1>, <PIL Image ann 2>, <PIL Image ann 3>, ...],
}

validation_split = {
    "image": [<PIL Image 101>, <PIL Image 102>, <PIL Image 103>, ...],
    "annotation": [<PIL Image ann 101>, <PIL Image ann 102>, <PIL Image ann 103>, ...],
}

def create_instance_segmentation_dataset(label2id, **splits):
    dataset_dict = {}
    for split_name, split in splits.items():
        split["semantic_class_to_id"] = [label2id] * len(split["image"])
        dataset_split = (
            Dataset.from_dict(split)
            .cast_column("image", DatasetImage())
            .cast_column("annotation", DatasetImage())
        )
        dataset_dict[split_name] = dataset_split
    return DatasetDict(dataset_dict)

dataset = create_instance_segmentation_dataset(label2id, train=train_split, validation=validation_split)
dataset.push_to_hub("qubvel-hf/ade20k-nano")

Use this dataset for fine-tuning by specifying its name with --dataset_name <your_dataset_repo>.

See also: Dataset Creation Guide