-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathrun_tf_text_classification.py
executable file
·310 lines (260 loc) · 10.4 KB
/
run_tf_text_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for sequence classification."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def get_tfds(
train_file: str,
eval_file: str,
test_file: str,
tokenizer: PreTrainedTokenizer,
label_column_id: int,
max_seq_length: Optional[int] = None,
):
files = {}
if train_file is not None:
files[datasets.Split.TRAIN] = [train_file]
if eval_file is not None:
files[datasets.Split.VALIDATION] = [eval_file]
if test_file is not None:
files[datasets.Split.TEST] = [test_file]
ds = datasets.load_dataset("csv", data_files=files)
features_name = list(ds[list(files.keys())[0]].features.keys())
label_name = features_name.pop(label_column_id)
label_list = list(set(ds[list(files.keys())[0]][label_name]))
label2id = {label: i for i, label in enumerate(label_list)}
input_names = tokenizer.model_input_names
transformed_ds = {}
if len(features_name) == 1:
for k in files.keys():
transformed_ds[k] = ds[k].map(
lambda example: tokenizer.batch_encode_plus(
example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length"
),
batched=True,
)
elif len(features_name) == 2:
for k in files.keys():
transformed_ds[k] = ds[k].map(
lambda example: tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]),
truncation=True,
max_length=max_seq_length,
padding="max_length",
),
batched=True,
)
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
train_ds = (
tf.data.Dataset.from_generator(
gen_train,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
train_ds = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN])))
val_ds = (
tf.data.Dataset.from_generator(
gen_val,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
val_ds = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION])))
test_ds = (
tf.data.Dataset.from_generator(
gen_test,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
test_ds = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST])))
return train_ds, val_ds, test_ds, label2id
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
label_column_id: int = field(metadata={"help": "Which column contains the label"})
train_file: str = field(default=None, metadata={"help": "The path of the training file"})
dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"})
test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"})
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, "
f"16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
train_dataset, eval_dataset, test_ds, label2id = get_tfds(
train_file=data_args.train_file,
eval_file=data_args.dev_file,
test_file=data_args.test_file,
tokenizer=tokenizer,
label_column_id=data_args.label_column_id,
max_seq_length=data_args.max_seq_length,
)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=len(label2id),
label2id=label2id,
id2label={id: label for label, id in label2id.items()},
finetuning_task="text-classification",
cache_dir=model_args.cache_dir,
)
with training_args.strategy.scope():
model = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_pt=bool(".bin" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
def compute_metrics(p: EvalPrediction) -> Dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
trainer = TFTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
results.update(result)
return results
if __name__ == "__main__":
main()