-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_modeling_auto.py
391 lines (329 loc) · 15.9 KB
/
test_modeling_auto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import tempfile
import unittest
from transformers import BertConfig, is_torch_available
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
require_scatter,
require_torch,
slow,
)
from .test_modeling_bert import BertModelTester
if is_torch_available():
import torch
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTableQuestionAnswering,
AutoModelForTokenClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertModel,
FunnelBaseModel,
FunnelModel,
GPT2Config,
GPT2LMHeadModel,
PreTrainedModel,
RobertaForMaskedLM,
T5Config,
T5ForConditionalGeneration,
TapasConfig,
TapasForQuestionAnswering,
)
from transformers.models.auto.modeling_auto import (
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
)
from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class NewModelConfig(BertConfig):
model_type = "new-model"
if is_torch_available():
class NewModel(BertModel):
config_class = NewModelConfig
class FakeModel(PreTrainedModel):
config_class = BertConfig
base_model_prefix = "fake"
def __init__(self, config):
super().__init__(config)
self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, x):
return self.linear(x)
def _init_weights(self, module):
pass
# Make sure this is synchronized with the model above.
FAKE_MODEL_CODE = """
import torch
from transformers import BertConfig, PreTrainedModel
class FakeModel(PreTrainedModel):
config_class = BertConfig
base_model_prefix = "fake"
def __init__(self, config):
super().__init__(config)
self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, x):
return self.linear(x)
def _init_weights(self, module):
pass
"""
@require_torch
class AutoModelTest(unittest.TestCase):
@slow
def test_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModel.from_pretrained(model_name)
model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertModel)
self.assertEqual(len(loading_info["missing_keys"]), 0)
self.assertEqual(len(loading_info["unexpected_keys"]), 8)
self.assertEqual(len(loading_info["mismatched_keys"]), 0)
self.assertEqual(len(loading_info["error_msgs"]), 0)
@slow
def test_model_for_pretraining_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModelForPreTraining.from_pretrained(model_name)
model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForPreTraining)
# Only one value should not be initialized and in the missing keys.
missing_keys = loading_info.pop("missing_keys")
self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys)
for key, value in loading_info.items():
self.assertEqual(len(value), 0)
@slow
def test_lmhead_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModelWithLMHead.from_pretrained(model_name)
model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForMaskedLM)
@slow
def test_model_for_causal_lm(self):
for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, GPT2Config)
model = AutoModelForCausalLM.from_pretrained(model_name)
model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, GPT2LMHeadModel)
@slow
def test_model_for_masked_lm(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModelForMaskedLM.from_pretrained(model_name)
model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForMaskedLM)
@slow
def test_model_for_encoder_decoder_lm(self):
for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, T5Config)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, T5ForConditionalGeneration)
@slow
def test_sequence_classification_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model, loading_info = AutoModelForSequenceClassification.from_pretrained(
model_name, output_loading_info=True
)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForSequenceClassification)
@slow
def test_question_answering_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForQuestionAnswering)
@slow
@require_scatter
def test_table_question_answering_model_from_pretrained(self):
for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, TapasConfig)
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
model_name, output_loading_info=True
)
self.assertIsNotNone(model)
self.assertIsInstance(model, TapasForQuestionAnswering)
@slow
def test_token_classification_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModelForTokenClassification.from_pretrained(model_name)
model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForTokenClassification)
def test_from_pretrained_identifier(self):
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(model, BertForMaskedLM)
self.assertEqual(model.num_parameters(), 14410)
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
def test_from_identifier_from_model_type(self):
model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
self.assertIsInstance(model, RobertaForMaskedLM)
self.assertEqual(model.num_parameters(), 14410)
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
def test_from_pretrained_with_tuple_values(self):
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
self.assertIsInstance(model, FunnelModel)
config = copy.deepcopy(model.config)
config.architectures = ["FunnelBaseModel"]
model = AutoModel.from_config(config)
self.assertIsInstance(model, FunnelBaseModel)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
model = AutoModel.from_pretrained(tmp_dir)
self.assertIsInstance(model, FunnelBaseModel)
def test_parents_and_children_in_mappings(self):
# Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
# by the parents and will return the wrong configuration type when using auto models
mappings = (
MODEL_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
)
for mapping in mappings:
mapping = tuple(mapping.items())
for index, (child_config, child_model) in enumerate(mapping[1:]):
for parent_config, parent_model in mapping[: index + 1]:
assert not issubclass(
child_config, parent_config
), f"{child_config.__name__} is child of {parent_config.__name__}"
# Tuplify child_model and parent_model since some of them could be tuples.
if not isinstance(child_model, (list, tuple)):
child_model = (child_model,)
if not isinstance(parent_model, (list, tuple)):
parent_model = (parent_model,)
for child, parent in [(a, b) for a in child_model for b in parent_model]:
assert not issubclass(child, parent), f"{child.__name__} is child of {parent.__name__}"
def test_from_pretrained_dynamic_model(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
config.auto_map = {"AutoModel": "modeling.FakeModel"}
model = FakeModel(config)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
with open(os.path.join(tmp_dir, "modeling.py"), "w") as f:
f.write(FAKE_MODEL_CODE)
new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_new_model_registration(self):
AutoConfig.register("new-model", NewModelConfig)
auto_classes = [
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
]
try:
for auto_class in auto_classes:
with self.subTest(auto_class.__name__):
# Wrong config class will raise an error
with self.assertRaises(ValueError):
auto_class.register(BertConfig, NewModel)
auto_class.register(NewModelConfig, NewModel)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
auto_class.register(BertConfig, BertModel)
# Now that the config is registered, it can be used as any other config with the auto-API
tiny_config = BertModelTester(self).get_config()
config = NewModelConfig(**tiny_config.to_dict())
model = auto_class.from_config(config)
self.assertIsInstance(model, NewModel)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
new_model = auto_class.from_pretrained(tmp_dir)
self.assertIsInstance(new_model, NewModel)
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
MODEL_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]