-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_feature_extraction_speech_to_text.py
250 lines (207 loc) · 10.7 KB
/
test_feature_extraction_speech_to_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from .test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import Speech2TextFeatureExtractor
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
@require_torchaudio
class Speech2TextFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=24,
num_mel_bins=24,
padding_value=0.0,
sampling_rate=16_000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.num_mel_bins = num_mel_bins
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class Speech2TextFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = Speech2TextFeatureExtractor if is_speech_available() else None
def setUp(self):
self.feat_extract_tester = Speech2TextFeatureExtractionTester(self)
def _check_zero_mean_unit_variance(self, input_vector):
self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3))
self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3))
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_cepstral_mean_and_variance_normalization(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs, padding=padding, max_length=max_length, return_attention_mask=True
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_np(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs, max_length=max_length, padding=padding, return_tensors="np", return_attention_mask=True
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_trunc_max_length(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
inputs = feature_extractor(
speech_inputs,
padding="max_length",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1])
self._check_zero_mean_unit_variance(input_features[2])
def test_cepstral_mean_and_variance_normalization_trunc_longest(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 4, 24))
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=16,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 6, 24))
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)