-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_feature_extraction_segformer.py
335 lines (289 loc) · 11.9 KB
/
test_feature_extraction_segformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from datasets import load_dataset
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import SegformerFeatureExtractor
class SegformerFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=30,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
reduce_labels=False,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.reduce_labels = reduce_labels
def prepare_feat_extract_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"reduce_labels": self.reduce_labels,
}
def prepare_semantic_single_inputs():
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(dataset[0]["file"])
map = Image.open(dataset[1]["file"])
return image, map
def prepare_semantic_batch_inputs():
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image1 = Image.open(dataset[0]["file"])
map1 = Image.open(dataset[1]["file"])
image2 = Image.open(dataset[2]["file"])
map2 = Image.open(dataset[3]["file"])
return [image1, image2], [map1, map2]
@require_torch
@require_vision
class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = SegformerFeatureExtractor if is_vision_available() else None
def setUp(self):
self.feature_extract_tester = SegformerFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "size"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "reduce_labels"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
def test_call_numpy(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random numpy tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
def test_call_pytorch(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
def test_call_segmentation_maps(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
maps = []
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
maps.append(torch.zeros(image.shape[-2:]).long())
# Test not batched input
encoding = feature_extractor(image_inputs[0], maps[0], return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test batched
encoding = feature_extractor(image_inputs, maps, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(
encoding["labels"].shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test not batched input (PIL images)
image, segmentation_map = prepare_semantic_single_inputs()
encoding = feature_extractor(image, segmentation_map, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test batched input (PIL images)
images, segmentation_maps = prepare_semantic_batch_inputs()
encoding = feature_extractor(images, segmentation_maps, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
2,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(
encoding["labels"].shape,
(
2,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
def test_reduce_labels(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
image, map = prepare_semantic_single_inputs()
encoding = feature_extractor(image, map, return_tensors="pt")
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 150)
feature_extractor.reduce_labels = True
encoding = feature_extractor(image, map, return_tensors="pt")
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)