-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathrun_onnx_exporter.py
205 lines (164 loc) · 6.52 KB
/
run_onnx_exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
import argparse
import logging
import os
import sys
import numpy as np
import torch
import onnxruntime
import transformers
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger(__name__)
model_dict = {"facebook/bart-base": BartForConditionalGeneration}
tokenizer_dict = {"facebook/bart-base": BartTokenizer}
def parse_args():
parser = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph.")
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=5,
help=("The maximum total input sequence length after tokenization."),
)
parser.add_argument(
"--num_beams",
type=int,
default=None,
help="Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Device where the model will be run",
)
parser.add_argument("--output_file_path", type=str, default=None, help="Where to store the final ONNX file.")
args = parser.parse_args()
return args
def load_model_tokenizer(model_name, device="cpu"):
huggingface_model = model_dict[model_name].from_pretrained(model_name).to(device)
tokenizer = tokenizer_dict[model_name].from_pretrained(model_name)
if model_name in ["facebook/bart-base"]:
huggingface_model.config.no_repeat_ngram_size = 0
huggingface_model.config.forced_bos_token_id = None
huggingface_model.config.min_length = 0
return huggingface_model, tokenizer
def export_and_validate_model(model, tokenizer, onnx_file_path, num_beams, max_length):
model.eval()
ort_sess = None
bart_script_model = torch.jit.script(BARTBeamSearchGenerator(model))
with torch.no_grad():
ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt").to(model.device)
summary_ids = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
num_beams=num_beams,
max_length=max_length,
early_stopping=True,
decoder_start_token_id=model.config.decoder_start_token_id,
)
torch.onnx.export(
bart_script_model,
(
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
),
onnx_file_path,
opset_version=14,
input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"],
output_names=["output_ids"],
dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
},
example_outputs=summary_ids,
)
logger.info("Model exported to {}".format(onnx_file_path))
new_onnx_file_path = remove_dup_initializers(os.path.abspath(onnx_file_path))
logger.info("Deduplicated and optimized model written to {}".format(new_onnx_file_path))
ort_sess = onnxruntime.InferenceSession(new_onnx_file_path)
ort_out = ort_sess.run(
None,
{
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(num_beams),
"max_length": np.array(max_length),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id),
},
)
np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1e-3, atol=1e-3)
logger.info("Model outputs from torch and ONNX Runtime are similar.")
logger.info("Success.")
def main():
args = parse_args()
max_length = 5
num_beams = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.setLevel(logging.INFO)
transformers.utils.logging.set_verbosity_error()
device = torch.device(args.device)
model, tokenizer = load_model_tokenizer(args.model_name_or_path, device)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
model.to(device)
if args.max_length:
max_length = args.max_length
if args.num_beams:
num_beams = args.num_beams
if args.output_file_path:
output_name = args.output_file_path
else:
output_name = "BART.onnx"
logger.info("Exporting model to ONNX")
export_and_validate_model(model, tokenizer, output_name, num_beams, max_length)
if __name__ == "__main__":
main()