-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_tokenization_small_blenderbot.py
87 lines (70 loc) · 3.54 KB
/
test_tokenization_small_blenderbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the Blenderbot small tokenizer."""
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from .test_tokenization_common import TokenizerTesterMixin
class BlenderbotSmallTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BlenderbotSmallTokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
vocab = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""]
self.special_tokens_map = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "adapt act apte"
output_text = "adapt act apte"
return input_text, output_text
def test_full_blenderbot_small_tokenizer(self):
tokenizer = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "adapt act apte"
bpe_tokens = ["adapt", "act", "ap@@", "te"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
input_bpe_tokens = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def test_special_tokens_small_tok(self):
tok = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M")
assert tok("sam").input_ids == [1384]
src_text = "I am a small frog."
encoded = tok([src_text], padding=False, truncation=False)["input_ids"]
decoded = tok.batch_decode(encoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def test_empty_word_small_tok(self):
tok = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M")
src_text = "I am a small frog ."
src_text_dot = "."
encoded = tok(src_text)["input_ids"]
encoded_dot = tok(src_text_dot)["input_ids"]
assert encoded[-1] == encoded_dot[0]