-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_tokenization_m2m_100.py
240 lines (192 loc) · 11.7 KB
/
test_tokenization_m2m_100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import M2M100Tokenizer, is_torch_available
from transformers.file_utils import is_sentencepiece_available
from transformers.testing_utils import nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow
if is_sentencepiece_available():
from transformers.models.m2m_100.tokenization_m2m_100 import save_json, VOCAB_FILES_NAMES
from .test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right
EN_CODE = 128022
FR_CODE = 128028
@require_sentencepiece
class M2M100TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = M2M100Tokenizer
test_rust_tokenizer = False
test_seq2seq = False
test_sentencepiece = True
def setUp(self):
super().setUp()
vocab = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
save_dir = Path(self.tmpdirname)
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])
tokenizer = M2M100Tokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return M2M100Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
return (
"This is a test",
"This is a test",
)
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "</s>"
token_id = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "</s>")
self.assertEqual(vocab_keys[1], "<unk>")
self.assertEqual(vocab_keys[-1], "<s>")
self.assertEqual(len(vocab_keys), 10)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 117)
@unittest.skip("Skip this test while all models are still to be uploaded.")
def test_pretrained_model_lists(self):
pass
def test_full_tokenizer(self):
tokenizer = self.get_tokenizer()
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[2, 3, 4, 5, 6],
)
back_tokens = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
self.assertListEqual(back_tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
text = tokenizer.convert_tokens_to_string(tokens)
self.assertEqual(text, "This is a test")
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="facebook/m2m100_418M",
revision="c168bae485c864188cf9aa0e4108b0b6934dc91e",
)
@require_torch
@require_sentencepiece
@require_tokenizers
class M2M100TokenizerIntegrationTest(unittest.TestCase):
checkpoint_name = "facebook/m2m100_418M"
src_text = [
"In my opinion, there are two levels of response from the French government.",
"NSA Affair Emphasizes Complete Lack of Debate on Intelligence",
]
tgt_text = [
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
]
# fmt: off
expected_src_tokens = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
# fmt: on
@classmethod
def setUpClass(cls):
cls.tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained(
cls.checkpoint_name, src_lang="en", tgt_lang="fr"
)
cls.pad_token_id = 1
return cls
def check_language_codes(self):
self.assertEqual(self.tokenizer.get_lang_id("ar"), 128006)
self.assertEqual(self.tokenizer.get_lang_id("en"), 128022)
self.assertEqual(self.tokenizer.get_lang_id("ro"), 128076)
self.assertEqual(self.tokenizer.get_lang_id("mr"), 128063)
def test_tokenizer_batch_encode_plus(self):
self.tokenizer.src_lang = "en"
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens, ids)
def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(FR_CODE, self.tokenizer.all_special_ids)
# fmt: off
generated_ids = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_french = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_french)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_special_tokens_unaffacted_by_save_load(self):
tmpdirname = tempfile.mkdtemp()
original_special_tokens = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(tmpdirname)
new_tok = M2M100Tokenizer.from_pretrained(tmpdirname)
self.assertDictEqual(new_tok.lang_token_to_id, original_special_tokens)
@require_torch
def test_batch_fairseq_parity(self):
self.tokenizer.src_lang = "en"
self.tokenizer.tgt_lang = "fr"
batch = self.tokenizer(self.src_text, padding=True, return_tensors="pt")
with self.tokenizer.as_target_tokenizer():
batch["labels"] = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt").input_ids
batch["decoder_input_ids"] = shift_tokens_right(
batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id
)
for k in batch:
batch[k] = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def test_src_lang_setter(self):
self.tokenizer.src_lang = "mr"
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
self.tokenizer.src_lang = "zh"
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
@require_torch
def test_as_target_tokenizer(self):
self.tokenizer.tgt_lang = "mr"
with self.tokenizer.as_target_tokenizer():
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
self.tokenizer.tgt_lang = "zh"
with self.tokenizer.as_target_tokenizer():
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
@require_torch
def test_tokenizer_translation(self):
inputs = self.tokenizer._build_translation_inputs("A test", src_lang="en", tgt_lang="ar")
self.assertEqual(
nested_simplify(inputs),
{
# en_XX, A, test, EOS
"input_ids": [[128022, 58, 4183, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 128006,
},
)