-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_pipelines_question_answering.py
271 lines (224 loc) · 10.8 KB
/
test_pipelines_question_answering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
LxmertConfig,
QuestionAnsweringPipeline,
)
from transformers.data.processors.squad import SquadExample
from transformers.pipelines import QuestionAnsweringArgumentHandler, pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY, PipelineTestCaseMeta
@is_pipeline_test
class QAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_QUESTION_ANSWERING_MAPPING
tf_model_mapping = TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING
def run_pipeline_test(self, model, tokenizer, feature_extractor):
if isinstance(model.config, LxmertConfig):
# This is an bimodal model, we need to find a more consistent way
# to switch on those models.
return
question_answerer = QuestionAnsweringPipeline(model, tokenizer)
outputs = question_answerer(
question="Where was HuggingFace founded ?", context="HuggingFace was founded in Paris."
)
self.assertEqual(outputs, {"answer": ANY(str), "start": ANY(int), "end": ANY(int), "score": ANY(float)})
outputs = question_answerer(
question=["In what field is HuggingFace working ?", "In what field is HuggingFace working ?"],
context="HuggingFace was founded in Paris.",
)
self.assertEqual(
outputs,
[
{"answer": ANY(str), "start": ANY(int), "end": ANY(int), "score": ANY(float)},
{"answer": ANY(str), "start": ANY(int), "end": ANY(int), "score": ANY(float)},
],
)
outputs = question_answerer(
question=["What field is HuggingFace working ?", "In what field is HuggingFace ?"],
context=[
"HuggingFace is a startup based in New-York",
"HuggingFace is a startup founded in Paris",
],
)
self.assertEqual(
outputs,
[
{"answer": ANY(str), "start": ANY(int), "end": ANY(int), "score": ANY(float)},
{"answer": ANY(str), "start": ANY(int), "end": ANY(int), "score": ANY(float)},
],
)
with self.assertRaises(ValueError):
question_answerer(question="", context="HuggingFace was founded in Paris.")
with self.assertRaises(ValueError):
question_answerer(question=None, context="HuggingFace was founded in Paris.")
with self.assertRaises(ValueError):
question_answerer(question="In what field is HuggingFace working ?", context="")
with self.assertRaises(ValueError):
question_answerer(question="In what field is HuggingFace working ?", context=None)
outputs = question_answerer(
question="Where was HuggingFace founded ?", context="HuggingFace was founded in Paris.", topk=20
)
self.assertEqual(
outputs, [{"answer": ANY(str), "start": ANY(int), "end": ANY(int), "score": ANY(float)} for i in range(20)]
)
@require_torch
def test_small_model_pt(self):
question_answerer = pipeline(
"question-answering", model="sshleifer/tiny-distilbert-base-cased-distilled-squad"
)
outputs = question_answerer(
question="Where was HuggingFace founded ?", context="HuggingFace was founded in Paris."
)
self.assertEqual(nested_simplify(outputs), {"score": 0.01, "start": 0, "end": 11, "answer": "HuggingFace"})
@require_tf
def test_small_model_tf(self):
question_answerer = pipeline(
"question-answering", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf"
)
outputs = question_answerer(
question="Where was HuggingFace founded ?", context="HuggingFace was founded in Paris."
)
self.assertEqual(nested_simplify(outputs), {"score": 0.011, "start": 0, "end": 11, "answer": "HuggingFace"})
@slow
@require_torch
def test_large_model_pt(self):
question_answerer = pipeline(
"question-answering",
)
outputs = question_answerer(
question="Where was HuggingFace founded ?", context="HuggingFace was founded in Paris."
)
self.assertEqual(nested_simplify(outputs), {"score": 0.979, "start": 27, "end": 32, "answer": "Paris"})
@slow
@require_tf
def test_large_model_tf(self):
question_answerer = pipeline("question-answering", framework="tf")
outputs = question_answerer(
question="Where was HuggingFace founded ?", context="HuggingFace was founded in Paris."
)
self.assertEqual(nested_simplify(outputs), {"score": 0.979, "start": 27, "end": 32, "answer": "Paris"})
@is_pipeline_test
class QuestionAnsweringArgumentHandlerTests(unittest.TestCase):
def test_argument_handler(self):
qa = QuestionAnsweringArgumentHandler()
Q = "Where was HuggingFace founded ?"
C = "HuggingFace was founded in Paris"
normalized = qa(Q, C)
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa(question=Q, context=C)
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa(question=Q, context=C)
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa(question=[Q, Q], context=C)
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 2)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa({"question": Q, "context": C})
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa([{"question": Q, "context": C}])
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa([{"question": Q, "context": C}, {"question": Q, "context": C}])
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 2)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa(X={"question": Q, "context": C})
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa(X=[{"question": Q, "context": C}])
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
normalized = qa(data={"question": Q, "context": C})
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 1)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
def test_argument_handler_error_handling(self):
qa = QuestionAnsweringArgumentHandler()
Q = "Where was HuggingFace founded ?"
C = "HuggingFace was founded in Paris"
with self.assertRaises(KeyError):
qa({"context": C})
with self.assertRaises(KeyError):
qa({"question": Q})
with self.assertRaises(KeyError):
qa([{"context": C}])
with self.assertRaises(ValueError):
qa(None, C)
with self.assertRaises(ValueError):
qa("", C)
with self.assertRaises(ValueError):
qa(Q, None)
with self.assertRaises(ValueError):
qa(Q, "")
with self.assertRaises(ValueError):
qa(question=None, context=C)
with self.assertRaises(ValueError):
qa(question="", context=C)
with self.assertRaises(ValueError):
qa(question=Q, context=None)
with self.assertRaises(ValueError):
qa(question=Q, context="")
with self.assertRaises(ValueError):
qa({"question": None, "context": C})
with self.assertRaises(ValueError):
qa({"question": "", "context": C})
with self.assertRaises(ValueError):
qa({"question": Q, "context": None})
with self.assertRaises(ValueError):
qa({"question": Q, "context": ""})
with self.assertRaises(ValueError):
qa([{"question": Q, "context": C}, {"question": None, "context": C}])
with self.assertRaises(ValueError):
qa([{"question": Q, "context": C}, {"question": "", "context": C}])
with self.assertRaises(ValueError):
qa([{"question": Q, "context": C}, {"question": Q, "context": None}])
with self.assertRaises(ValueError):
qa([{"question": Q, "context": C}, {"question": Q, "context": ""}])
with self.assertRaises(ValueError):
qa(question={"This": "Is weird"}, context="This is a context")
with self.assertRaises(ValueError):
qa(question=[Q, Q], context=[C, C, C])
with self.assertRaises(ValueError):
qa(question=[Q, Q, Q], context=[C, C])
def test_argument_handler_old_format(self):
qa = QuestionAnsweringArgumentHandler()
Q = "Where was HuggingFace founded ?"
C = "HuggingFace was founded in Paris"
# Backward compatibility for this
normalized = qa(question=[Q, Q], context=[C, C])
self.assertEqual(type(normalized), list)
self.assertEqual(len(normalized), 2)
self.assertEqual({type(el) for el in normalized}, {SquadExample})
def test_argument_handler_error_handling_odd(self):
qa = QuestionAnsweringArgumentHandler()
with self.assertRaises(ValueError):
qa(None)
with self.assertRaises(ValueError):
qa(Y=None)
with self.assertRaises(ValueError):
qa(1)