-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_pipelines_image_classification.py
152 lines (132 loc) · 5.24 KB
/
test_pipelines_image_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, PreTrainedTokenizer, is_vision_available
from transformers.pipelines import ImageClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_datasets,
require_tf,
require_torch,
require_vision,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
@require_torch
class ImageClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
@require_datasets
def run_pipeline_test(self, model, tokenizer, feature_extractor):
image_classifier = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")
self.assertEqual(
outputs,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
import datasets
dataset = datasets.load_dataset("Narsil/image_dummy", "image", split="test")
# Accepts URL + PIL.Image + lists
outputs = image_classifier(
[
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
)
self.assertEqual(
outputs,
[
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
],
)
@require_torch
def test_small_model_pt(self):
small_model = "lysandre/tiny-vit-random"
image_classifier = pipeline("image-classification", model=small_model)
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.0015, "label": "chambered nautilus, pearly nautilus, nautilus"},
{"score": 0.0015, "label": "pajama, pyjama, pj's, jammies"},
{"score": 0.0014, "label": "trench coat"},
{"score": 0.0014, "label": "handkerchief, hankie, hanky, hankey"},
{"score": 0.0014, "label": "baboon"},
],
)
outputs = image_classifier(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
top_k=2,
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.0015, "label": "chambered nautilus, pearly nautilus, nautilus"},
{"score": 0.0015, "label": "pajama, pyjama, pj's, jammies"},
],
[
{"score": 0.0015, "label": "chambered nautilus, pearly nautilus, nautilus"},
{"score": 0.0015, "label": "pajama, pyjama, pj's, jammies"},
],
],
)
@require_tf
@unittest.skip("Image classification is not implemented for TF")
def test_small_model_tf(self):
pass
def test_custom_tokenizer(self):
tokenizer = PreTrainedTokenizer()
# Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
image_classifier = pipeline("image-classification", model="lysandre/tiny-vit-random", tokenizer=tokenizer)
self.assertIs(image_classifier.tokenizer, tokenizer)