-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_onnx_v2.py
275 lines (226 loc) · 11.5 KB
/
test_onnx_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch
from transformers import ( # LongformerConfig,; T5Config,
AlbertConfig,
AutoTokenizer,
BartConfig,
DistilBertConfig,
GPT2Config,
GPTNeoConfig,
MBartConfig,
RobertaConfig,
XLMRobertaConfig,
is_torch_available,
)
from transformers.models.albert import AlbertOnnxConfig
from transformers.models.bart import BartOnnxConfig
from transformers.models.bert.configuration_bert import BertConfig, BertOnnxConfig
from transformers.models.distilbert import DistilBertOnnxConfig
# from transformers.models.longformer import LongformerOnnxConfig
from transformers.models.gpt2 import GPT2OnnxConfig
from transformers.models.gpt_neo import GPTNeoOnnxConfig
from transformers.models.mbart import MBartOnnxConfig
from transformers.models.roberta import RobertaOnnxConfig
# from transformers.models.t5 import T5OnnxConfig
from transformers.models.xlm_roberta import XLMRobertaOnnxConfig
from transformers.onnx import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
ParameterFormat,
export,
validate_model_outputs,
)
from transformers.onnx.config import DEFAULT_ONNX_OPSET, OnnxConfigWithPast
from transformers.onnx.utils import compute_effective_axis_dimension, compute_serialized_parameters_size
from transformers.testing_utils import require_onnx, require_torch, slow
@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
"""
Cover all the utilities involved to export ONNX models
"""
@require_torch
@patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
"""
Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
"""
self.assertRaises(AssertionError, export, None, None, None, None, None)
mock_is_torch_onnx_dict_inputs_support_available.assert_called()
def test_compute_effective_axis_dimension(self):
"""
When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
(> 1 to avoid ONNX squeezing the axis).
This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
"""
# Dynamic axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)
# Static axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)
# Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
# Dynamic axis (sequence, token added by the tokenizer 3 (pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
def test_compute_parameters_serialized_size(self):
"""
This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
parameters for the specified parameter's dtype.
"""
self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)
def test_flatten_output_collection_property(self):
"""
This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
past_keys = Tuple[Tuple]
ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
"""
self.assertEqual(
OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
{
"past_key.0": 0,
"past_key.1": 1,
"past_key.2": 2,
},
)
class OnnxConfigTestCaseV2(TestCase):
"""
Cover the test for models default.
Default means no specific features is being enabled on the model.
"""
@patch.multiple(OnnxConfig, __abstractmethods__=set())
def test_use_external_data_format(self):
"""
External data format is required only if the serialized size of the parameters if bigger than 2Gb
"""
TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT
# No parameters
self.assertFalse(OnnxConfig.use_external_data_format(0))
# Some parameters
self.assertFalse(OnnxConfig.use_external_data_format(1))
# Almost 2Gb parameters
self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))
# Exactly 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))
# More than 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))
class OnnxConfigWithPastTestCaseV2(TestCase):
"""
Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
"""
SUPPORTED_WITH_PAST_CONFIGS = {
("BART", BartConfig),
("GPT2", GPT2Config),
# ("T5", T5Config)
}
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_use_past(self):
"""
Ensure the use_past variable is correctly being set
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
self.assertFalse(
OnnxConfigWithPast.from_model_config(config()).use_past,
"OnnxConfigWithPast.from_model_config() should not use_past",
)
self.assertTrue(
OnnxConfigWithPast.with_past(config()).use_past,
"OnnxConfigWithPast.from_model_config() should use_past",
)
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_values_override(self):
"""
Ensure the use_past variable correctly set the `use_cache` value in model's configuration
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
# without past
onnx_config_default = OnnxConfigWithPast.from_model_config(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertFalse(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
# with past
onnx_config_default = OnnxConfigWithPast.with_past(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertTrue(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
if is_torch_available():
from transformers import ( # T5Model,
AlbertModel,
BartModel,
BertModel,
DistilBertModel,
GPT2Model,
GPTNeoModel,
MBartModel,
RobertaModel,
XLMRobertaModel,
)
PYTORCH_EXPORT_DEFAULT_MODELS = {
("ALBERT", "hf-internal-testing/tiny-albert", AlbertModel, AlbertConfig, AlbertOnnxConfig),
("BART", "facebook/bart-base", BartModel, BartConfig, BartOnnxConfig),
("BERT", "bert-base-cased", BertModel, BertConfig, BertOnnxConfig),
("DistilBERT", "distilbert-base-cased", DistilBertModel, DistilBertConfig, DistilBertOnnxConfig),
("GPT2", "gpt2", GPT2Model, GPT2Config, GPT2OnnxConfig),
("GPT-Neo", "EleutherAI/gpt-neo-125M", GPTNeoModel, GPTNeoConfig, GPTNeoOnnxConfig),
# ("LongFormer", "longformer-base-4096", LongformerModel, LongformerConfig, LongformerOnnxConfig),
("Roberta", "roberta-base", RobertaModel, RobertaConfig, RobertaOnnxConfig),
("XLM-Roberta", "roberta-base", XLMRobertaModel, XLMRobertaConfig, XLMRobertaOnnxConfig),
("MBart", "sshleifer/tiny-mbart", MBartModel, MBartConfig, MBartOnnxConfig),
# ("T5", "t5-small", T5Model, T5Config, T5OnnxConfig),
}
PYTORCH_EXPORT_WITH_PAST_MODELS = {
# ("BART", "facebook/bart-base", BartModel, BartConfig, BartOnnxConfig),
# ("GPT2", "gpt2", GPT2Model, GPT2Config, GPT2OnnxConfig),
# ("T5", "t5-small", T5Model, T5Config, T5OnnxConfig)
}
class OnnxExportTestCaseV2(TestCase):
"""
Integration tests ensuring supported models are correctly exported
"""
@slow
@require_torch
def test_pytorch_export_default(self):
from transformers.onnx import export
for name, model, model_class, config_class, onnx_config_class in PYTORCH_EXPORT_DEFAULT_MODELS:
with self.subTest(name):
self.assertTrue(hasattr(onnx_config_class, "from_model_config"))
tokenizer = AutoTokenizer.from_pretrained(model)
model = model_class(config_class.from_pretrained(model))
onnx_config = onnx_config_class.from_model_config(model.config)
with NamedTemporaryFile("w") as output:
onnx_inputs, onnx_outputs = export(
tokenizer, model, onnx_config, DEFAULT_ONNX_OPSET, Path(output.name)
)
try:
validate_model_outputs(onnx_config, tokenizer, model, Path(output.name), onnx_outputs, 1e-5)
except ValueError as ve:
self.fail(f"{name} -> {ve}")
@slow
@require_torch
def test_pytorch_export_with_past(self):
from transformers.onnx import export
for name, model, model_class, config_class, onnx_config_class in PYTORCH_EXPORT_WITH_PAST_MODELS:
with self.subTest(name):
self.assertTrue(hasattr(onnx_config_class, "with_past"), "OnnxConfigWithPast should have with_past()")
tokenizer = AutoTokenizer.from_pretrained(model)
model = model_class(config_class())
onnx_config = onnx_config_class.with_past(model.config)
self.assertTrue(hasattr(onnx_config, "use_past"), "OnnxConfigWithPast should have use_past attribute.")
self.assertTrue(
onnx_config.use_past, "OnnxConfigWithPast.use_past should be if called with with_past()"
)
with NamedTemporaryFile("w") as output:
output = Path(output.name)
onnx_inputs, onnx_outputs = export(tokenizer, model, onnx_config, DEFAULT_ONNX_OPSET, output)
try:
validate_model_outputs(onnx_config, tokenizer, model, output, onnx_outputs, 1e-5)
except ValueError as ve:
self.fail(f"{name} -> {ve}")