-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_modeling_transfo_xl.py
420 lines (358 loc) · 20 KB
/
test_modeling_transfo_xl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
import unittest
from transformers import TransfoXLConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from torch import nn
from transformers import TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel
from transformers.models.transfo_xl.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST
class TransfoXLModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 14
self.seq_length = 7
self.mem_len = 30
self.key_length = self.seq_length + self.mem_len
self.clamp_len = 15
self.is_training = False
self.use_labels = True
self.vocab_size = 99
self.cutoffs = [10, 50, 80]
self.hidden_size = 32
self.d_embed = 32
self.num_attention_heads = 4
self.d_head = 8
self.d_inner = 128
self.div_val = 2
self.num_hidden_layers = 5
self.scope = None
self.seed = 1
self.eos_token_id = 0
self.num_labels = 3
self.pad_token_id = self.vocab_size - 1
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
return (config, input_ids_1, input_ids_2, lm_labels)
def get_config(self):
return TransfoXLConfig(
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.hidden_size,
d_embed=self.d_embed,
n_head=self.num_attention_heads,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.to(torch_device)
model.eval()
outputs1 = model(input_ids_1)
outputs2 = model(input_ids_2, outputs1["mems"])
outputs = {
"hidden_states_1": outputs1["last_hidden_state"],
"mems_1": outputs1["mems"],
"hidden_states_2": outputs2["last_hidden_state"],
"mems_2": outputs2["mems"],
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertEqual(result["hidden_states_1"].shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result["hidden_states_2"].shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertListEqual(
[mem.shape for mem in result["mems_1"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
self.parent.assertListEqual(
[mem.shape for mem in result["mems_2"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.to(torch_device)
model.eval()
lm_logits_1 = model(input_ids_1)["prediction_scores"]
outputs1 = model(input_ids_1, labels=lm_labels)
lm_logits_2 = model(input_ids_2, mems=outputs1["mems"])["prediction_scores"]
outputs2 = model(input_ids_2, labels=lm_labels, mems=outputs1["mems"])
outputs = {
"loss_1": outputs1["losses"],
"mems_1": outputs1["mems"],
"lm_logits_1": lm_logits_1,
"loss_2": outputs2["losses"],
"mems_2": outputs2["mems"],
"lm_logits_2": lm_logits_2,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertEqual(result["loss_1"].shape, (self.batch_size, self.seq_length - 1))
self.parent.assertEqual(result["lm_logits_1"].shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in result["mems_1"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
self.parent.assertEqual(result["loss_2"].shape, (self.batch_size, self.seq_length - 1))
self.parent.assertEqual(result["lm_logits_2"].shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in result["mems_2"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
def create_and_check_transfo_xl_for_sequence_classification(self, config, input_ids_1, input_ids_2, lm_labels):
config.num_labels = self.num_labels
model = TransfoXLForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids_1)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
@require_torch
class TransfoXLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(TransfoXLModel, TransfoXLLMHeadModel, TransfoXLForSequenceClassification) if is_torch_available() else ()
)
all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
test_pruning = False
test_torchscript = False
test_resize_embeddings = True
def check_cutoffs_and_n_token(
self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size
):
# Check that the cutoffs were modified accordingly
for i in range(len(copied_cutoffs)):
if i < layer:
self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i])
if model_class == TransfoXLLMHeadModel:
self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i])
if i < len(model.config.cutoffs):
self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i])
else:
self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i] + resized_value)
if model_class == TransfoXLLMHeadModel:
self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i] + resized_value)
if i < len(model.config.cutoffs):
self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i] + resized_value)
self.assertEqual(model_embed.n_token, vocab_size + resized_value)
if model_class == TransfoXLLMHeadModel:
self.assertEqual(model.crit.n_token, vocab_size + resized_value)
def setUp(self):
self.model_tester = TransfoXLModelTester(self)
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_transfo_xl_model(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
self.model_tester.check_transfo_xl_model_output(output_result)
def test_transfo_xl_lm_head(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
self.model_tester.check_transfo_xl_lm_head_output(output_result)
def test_transfo_xl_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# xlnet cannot keep gradients in attentions or hidden states
return
@require_torch_multi_gpu
def test_multi_gpu_data_parallel_forward(self):
# Opt-out of this test.
pass
@slow
def test_model_from_pretrained(self):
for model_name in TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TransfoXLModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_resize_tokens_embeddings(self):
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = [emb.weight.clone() for emb in model_embed.emb_layers]
# Retrieve the cutoffs and copy them
copied_cutoffs = copy.copy(model_embed.cutoffs)
test_layers = [x for x in range(config.div_val)]
for layer in test_layers:
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10, layer)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] + 10)
# Check that the cutoffs were modified accordingly
self.check_cutoffs_and_n_token(
copied_cutoffs, layer, model_embed, model, model_class, 10, model_vocab_size
)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**inputs_dict)
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 5, layer)
self.assertEqual(model.config.vocab_size, model_vocab_size - 5)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] - 5)
# Check that the cutoffs were modified accordingly
self.check_cutoffs_and_n_token(
copied_cutoffs, layer, model_embed, model, model_class, -5, model_vocab_size
)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 5 - 1)
model(**inputs_dict)
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings[layer], model_embed.emb_layers[layer].weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Reset model embeddings to original size
model.resize_token_embeddings(model_vocab_size, layer)
self.assertEqual(model_vocab_size, model.config.vocab_size)
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0])
def test_resize_embeddings_untied(self):
# transfo-xl requires special resize for lm-head
return
def _check_attentions_for_generate(
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
):
self.assertIsInstance(attentions, tuple)
self.assertListEqual(
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
)
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
for idx, iter_attentions in enumerate(attentions):
tgt_len = min_length if idx == 0 else (min_length - 2)
src_len = (min_length + config.mem_len) if idx == 0 else (min_length + config.mem_len - 2)
expected_shape = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
)
def _check_hidden_states_for_generate(
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
):
self.assertIsInstance(hidden_states, tuple)
self.assertListEqual(
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
[True] * len(hidden_states),
)
self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)
for idx, iter_hidden_states in enumerate(hidden_states):
seq_len = min_length if idx == 0 else min_length - 2
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
[expected_shape] * len(iter_hidden_states),
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "cluster_weight") and module.cluster_weight is not None:
module.cluster_weight.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "cluster_bias") and module.cluster_bias is not None:
module.cluster_bias.data.fill_(3)
if hasattr(module, "emb_projs"):
for i in range(len(module.emb_projs)):
if module.emb_projs[i] is not None:
nn.init.constant_(module.emb_projs[i], 0.0003)
if hasattr(module, "out_projs"):
for i in range(len(module.out_projs)):
if module.out_projs[i] is not None:
nn.init.constant_(module.out_projs[i], 0.0003)
for param in ["r_emb", "r_w_bias", "r_r_bias", "r_bias"]:
if hasattr(module, param) and getattr(module, param) is not None:
weight = getattr(module, param)
weight.data.fill_(3)
@require_torch
class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_transfo_xl_wt103(self):
model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
model.to(torch_device)
# fmt: off
input_ids = torch.tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]],dtype=torch.long,device=torch_device) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
expected_output_ids = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,142,1298,188,2,29546,113,8,3654,4,1,1109,7136,833,3,13,1645,4,29546,11,104,7,1,1109,532,7129,2,10,83507,2,1162,1123,2,6,7245,10,2,5,11,104,7,1,1109,532,7129,2,10,24,24,10,22,10,13,770,5863,4,7245,10] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family ( except for
# Alexei and Maria ) are discovered. The voice of young son, Tsarevich Alexei
# Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young
# Grigori Rasputin is asked by his father and a group of men to perform magic.
# Rasputin has a vision and denounces one of the men as a horse thief. Although
# his father initially slaps him for making such an accusation, Rasputin watches
# as the man is chased outside and beaten. Twenty years later, Rasputin sees a
# vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly
# becomes famous, with people, even a bishop, begging for his blessing. In the
# early 20th century, Rasputin became a symbol of the Russian Orthodox Church.
# The image of Rasputin was used in the Russian national anthem, " Nearer, My God,
# to Heaven ", and was used in the Russian national anthem, " " ( " The Great Spirit
# of Heaven "
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)