-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_wav2vec2_deepspeed.py
201 lines (169 loc) · 6.35 KB
/
test_wav2vec2_deepspeed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
git_repo_path = Path(__file__).resolve().parents[3] / "src"
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
models = dict(base="patrickvonplaten/wav2vec2_tiny_random", robust="patrickvonplaten/wav2vec2_tiny_random_robust")
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]
def custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
return f"{func.__name__}_{param_based_name}"
# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeedWav2Vec2(TestCasePlus):
@parameterized.expand(params, name_func=custom_name_func)
def test_fp32_non_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=False,
fp16=False,
)
@require_torch_multi_gpu
@parameterized.expand(params, name_func=custom_name_func)
def test_fp32_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=True,
fp16=False,
)
@parameterized.expand(params, name_func=custom_name_func)
def test_fp16_non_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=False,
fp16=True,
)
@require_torch_multi_gpu
@parameterized.expand(params, name_func=custom_name_func)
def test_fp16_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=True,
fp16=True,
)
def do_checks(self, output_dir):
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
# XXX: need to do better validation beyond just that the run was successful
def run_and_check(
self,
stage: str,
model: str,
eval_steps: int = 10,
distributed: bool = True,
quality_checks: bool = True,
fp16: bool = True,
):
model_name = models[model]
output_dir = self.run_trainer(
stage=stage,
model_name=model_name,
eval_steps=eval_steps,
num_train_epochs=1,
distributed=distributed,
fp16=fp16,
)
self.do_checks(output_dir)
return output_dir
def run_trainer(
self,
stage: str,
model_name: str,
eval_steps: int = 10,
num_train_epochs: int = 1,
distributed: bool = True,
fp16: bool = True,
):
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
args = f"""
--model_name_or_path {model_name}
--dataset_name patrickvonplaten/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fp16:
args.extend(["--fp16"])
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split()
script = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"]
launcher = self.get_launcher(distributed)
cmd = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
return output_dir
def get_launcher(self, distributed=False):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
num_gpus = min(2, get_gpu_count()) if distributed else 1
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()