-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathdistributed_ray_retriever.py
185 lines (156 loc) · 8.02 KB
/
distributed_ray_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
logger = logging.getLogger(__name__)
class RayRetriever:
def __init__(self):
self.initialized = False
def create_rag_retriever(self, config, question_encoder_tokenizer, generator_tokenizer, index):
if not self.initialized:
self.retriever = RagRetriever(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
index=index,
init_retrieval=False,
)
self.initialized = True
def init_retrieval(self):
self.retriever.index.init_index()
def clear_object(self):
# delete the old self.retriever object before assigning the new index
del self.retriever
self.initialized = False
def retrieve(self, question_hidden_states, n_docs):
doc_ids, retrieved_doc_embeds = self.retriever._main_retrieve(question_hidden_states, n_docs)
doc_dicts = self.retriever.index.get_doc_dicts(doc_ids)
return doc_ids, retrieved_doc_embeds, doc_dicts
class RagRayDistributedRetriever(RagRetriever):
"""
A distributed retriever built on top of the ``Ray`` API, a library
for building distributed applications (https://docs.ray.io/en/master/).
package. During training, all training workers initialize their own
instance of a `RagRayDistributedRetriever`, and each instance of
this distributed retriever shares a common set of Retrieval Ray
Actors (https://docs.ray.io/en/master/walkthrough.html#remote
-classes-actors) that load the index on separate processes. Ray
handles the communication between the `RagRayDistributedRetriever`
instances and the remote Ray actors. If training is done in a
non-distributed setup, the index will simply be loaded in the same
process as the training worker and Ray will not be used.
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors.
These actor classes run on remote processes and are responsible for performing the index lookup.
index (:class:`~transformers.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
"""
def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, retrieval_workers, index=None):
if index is not None and index.is_initialized() and len(retrieval_workers) > 0:
raise ValueError(
"When using Ray for distributed fine-tuning, "
"you'll need to provide the paths instead, "
"as the dataset and the index are loaded "
"separately. More info in examples/rag/use_own_knowledge_dataset.py "
)
super().__init__(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
index=index,
init_retrieval=False,
)
self.retrieval_workers = retrieval_workers
self.question_encoder_tokenizer = question_encoder_tokenizer
self.generator_tokenizer = generator_tokenizer
if len(self.retrieval_workers) > 0:
ray.get(
[
worker.create_rag_retriever.remote(config, question_encoder_tokenizer, generator_tokenizer, index)
for worker in self.retrieval_workers
]
)
def init_retrieval(self):
"""
Retriever initialization function, needs to be called from the
training process. This function triggers retrieval initialization
for all retrieval actors if using distributed setting, or loads
index into current process if training is not distributed.
"""
logger.info("initializing retrieval")
if len(self.retrieval_workers) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers])
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def retrieve(self, question_hidden_states, n_docs):
"""
Retrieves documents for specified ``question_hidden_states``. If
running training with multiple workers, a random retrieval actor is
selected to perform the index lookup and return the result.
Args:
question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`):
A batch of query vectors to retrieve with.
n_docs (:obj:`int`):
The number of docs retrieved per query.
Output:
retrieved_doc_embeds (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs, dim)`
The retrieval embeddings of the retrieved docs per query.
doc_ids (:obj:`np.ndarray` of shape :obj:`batch_size, n_docs`)
The ids of the documents in the index
doc_dicts (:obj:`List[dict]`):
The retrieved_doc_embeds examples per query.
"""
if len(self.retrieval_workers) > 0:
# Select a random retrieval actor.
random_worker = self.retrieval_workers[random.randint(0, len(self.retrieval_workers) - 1)]
doc_ids, retrieved_doc_embeds, doc_dicts = ray.get(
random_worker.retrieve.remote(question_hidden_states, n_docs)
)
else:
doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs)
doc_dicts = self.index.get_doc_dicts(doc_ids)
return retrieved_doc_embeds, doc_ids, doc_dicts
@classmethod
def get_tokenizers(cls, retriever_name_or_path, indexed_dataset=None, **kwargs):
return super(RagRayDistributedRetriever, cls).get_tokenizers(retriever_name_or_path, indexed_dataset, **kwargs)
@classmethod
def from_pretrained(cls, retriever_name_or_path, actor_handles, indexed_dataset=None, **kwargs):
config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs)
rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config)
question_encoder_tokenizer = rag_tokenizer.question_encoder
generator_tokenizer = rag_tokenizer.generator
if indexed_dataset is not None:
config.index_name = "custom"
index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset)
else:
index = cls._build_index(config)
return cls(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
retrieval_workers=actor_handles,
index=index,
)
def re_load(self):
logger.info("re-loading the new dataset with embeddings")
# access from the training loop
ray.get([worker.clear_object.remote() for worker in self.retrieval_workers])
# build the index object again
index = self._build_index(self.config)
ray.get(
[
worker.create_rag_retriever.remote(
self.config, self.question_encoder_tokenizer, self.generator_tokenizer, index
)
for worker in self.retrieval_workers
]
)