-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_finetune_trainer.py
211 lines (176 loc) · 7.84 KB
/
test_finetune_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import sys
from unittest.mock import patch
from transformers import BertTokenizer, EncoderDecoderModel
from transformers.file_utils import is_datasets_available
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, get_gpu_count, slow
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
from .test_seq2seq_examples import MBART_TINY
set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
class TestFinetuneTrainer(TestCasePlus):
def test_finetune_trainer(self):
output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
assert "eval_bleu" in first_step_stats
@slow
def test_finetune_trainer_slow(self):
# There is a missing call to __init__process_group somewhere
output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10)
# Check metrics
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
last_step_stats = eval_metrics[-1]
assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"] # model learned nothing
assert isinstance(last_step_stats["eval_bleu"], float)
# test if do_predict saves generations and metrics
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.json" in contents
@slow
def test_finetune_bert2bert(self):
if not is_datasets_available():
return
import datasets
bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
bert2bert.config.eos_token_id = tokenizer.sep_token_id
bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
bert2bert.config.max_length = 128
train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")
train_dataset = train_dataset.select(range(32))
val_dataset = val_dataset.select(range(16))
rouge = datasets.load_metric("rouge")
batch_size = 4
def _map_to_encoder_decoder_inputs(batch):
# Tokenizer will automatically set [BOS] <text> [EOS]
inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
batch["input_ids"] = inputs.input_ids
batch["attention_mask"] = inputs.attention_mask
batch["decoder_input_ids"] = outputs.input_ids
batch["labels"] = outputs.input_ids.copy()
batch["labels"] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
batch["decoder_attention_mask"] = outputs.attention_mask
assert all([len(x) == 512 for x in inputs.input_ids])
assert all([len(x) == 128 for x in outputs.input_ids])
return batch
def _compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
# all unnecessary tokens are removed
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])[
"rouge2"
].mid
return {
"rouge2_precision": round(rouge_output.precision, 4),
"rouge2_recall": round(rouge_output.recall, 4),
"rouge2_fmeasure": round(rouge_output.fmeasure, 4),
}
# map train dataset
train_dataset = train_dataset.map(
_map_to_encoder_decoder_inputs,
batched=True,
batch_size=batch_size,
remove_columns=["article", "highlights"],
)
train_dataset.set_format(
type="torch",
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
)
# same for validation dataset
val_dataset = val_dataset.map(
_map_to_encoder_decoder_inputs,
batched=True,
batch_size=batch_size,
remove_columns=["article", "highlights"],
)
val_dataset.set_format(
type="torch",
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
)
output_dir = self.get_auto_remove_tmp_dir()
training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
predict_with_generate=True,
evaluate_during_training=True,
do_train=True,
do_eval=True,
warmup_steps=0,
eval_steps=2,
logging_steps=2,
)
# instantiate trainer
trainer = Seq2SeqTrainer(
model=bert2bert,
args=training_args,
compute_metrics=_compute_metrics,
train_dataset=train_dataset,
eval_dataset=val_dataset,
)
# start training
trainer.train()
def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
output_dir = self.get_auto_remove_tmp_dir()
args = f"""
--model_name_or_path {model_name}
--data_dir {data_dir}
--output_dir {output_dir}
--overwrite_output_dir
--n_train 8
--n_val 8
--max_source_length {max_len}
--max_target_length {max_len}
--val_max_target_length {max_len}
--do_train
--do_eval
--do_predict
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--learning_rate 3e-3
--warmup_steps 8
--evaluate_during_training
--predict_with_generate
--logging_steps 0
--save_steps {str(eval_steps)}
--eval_steps {str(eval_steps)}
--sortish_sampler
--label_smoothing 0.1
--adafactor
--task translation
--tgt_lang ro_RO
--src_lang en_XX
""".split()
# --eval_beams 2
n_gpu = get_gpu_count()
if n_gpu > 1:
distributed_args = f"""
-m torch.distributed.launch
--nproc_per_node={n_gpu}
{self.test_file_dir}/finetune_trainer.py
""".split()
cmd = [sys.executable] + distributed_args + args
execute_subprocess_async(cmd, env=self.get_env())
else:
# 0 or 1 gpu
testargs = ["finetune_trainer.py"] + args
with patch.object(sys, "argv", testargs):
main()
return output_dir