-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathutils_summarization.py
184 lines (145 loc) · 5.88 KB
/
utils_summarization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from collections import deque
import os
import torch
from torch.utils.data import Dataset
# ------------
# Data loading
# ------------
class CNNDailyMailDataset(Dataset):
""" Abstracts the dataset used to train seq2seq models.
CNN/Daily News:
The CNN/Daily News raw datasets are downloaded from [1]. The stories are
stored in different files; the summary appears at the end of the story as
sentences that are prefixed by the special `@highlight` line. To process
the data, untar both datasets in the same folder, and pass the path to this
folder as the "data_dir argument. The formatting code was inspired by [2].
[1] https://cs.nyu.edu/~kcho/
[2] https://github.com/abisee/cnn-dailymail/
"""
def __init__(self, tokenizer, prefix="train", data_dir=""):
assert os.path.isdir(data_dir)
self.tokenizer = tokenizer
# We initialize the class by listing all the files that contain
# stories and summaries. Files are not read in memory given
# the size of the corpus.
self.stories_path = []
datasets = ("cnn", "dailymail")
for dataset in datasets:
path_to_stories = os.path.join(data_dir, dataset, "stories")
story_filenames_list = os.listdir(path_to_stories)
for story_filename in story_filenames_list:
path_to_story = os.path.join(path_to_stories, story_filename)
if not os.path.isfile(path_to_story):
continue
self.stories_path.append(path_to_story)
def __len__(self):
return len(self.stories_path)
def __getitem__(self, idx):
story_path = self.stories_path[idx]
with open(story_path, encoding="utf-8") as source:
raw_story = source.read()
story_lines, summary_lines = process_story(raw_story)
return story_lines, summary_lines
def process_story(raw_story):
""" Extract the story and summary from a story file.
Attributes:
raw_story (str): content of the story file as an utf-8 encoded string.
Raises:
IndexError: If the stoy is empty or contains no highlights.
"""
nonempty_lines = list(
filter(lambda x: len(x) != 0, [line.strip() for line in raw_story.split("\n")])
)
# for some unknown reason some lines miss a period, add it
nonempty_lines = [_add_missing_period(line) for line in nonempty_lines]
# gather article lines
story_lines = []
lines = deque(nonempty_lines)
while True:
try:
element = lines.popleft()
if element.startswith("@highlight"):
break
story_lines.append(element)
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None.
return story_lines, []
# gather summary lines
summary_lines = list(filter(lambda t: not t.startswith("@highlight"), lines))
return story_lines, summary_lines
def _add_missing_period(line):
END_TOKENS = [".", "!", "?", "...", "'", "`", '"', u"\u2019", u"\u2019", ")"]
if line.startswith("@highlight"):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
# --------------------------
# Encoding and preprocessing
# --------------------------
def fit_to_block_size(sequence, block_size, pad_token):
""" Adapt the source and target sequences' lengths to the block size.
If the sequence is shorter than the block size we pad it with -1 ids
which correspond to padding tokens.
"""
if len(sequence) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token] * (block_size - len(sequence)))
return sequence
def build_lm_labels(sequence, pad_token):
""" Padding token, encoded as 0, are represented by the value -1 so they
are not taken into account in the loss computation. """
padded = sequence.clone()
padded[padded == pad_token] = -1
return padded
def build_mask(sequence, pad_token):
""" Builds the mask. The attention mechanism will only attend to positions
with value 1. """
mask = torch.ones_like(sequence)
idx_pad_tokens = sequence == pad_token
mask[idx_pad_tokens] = 0
return mask
def encode_for_summarization(story_lines, summary_lines, tokenizer):
""" Encode the story and summary lines, and join them
as specified in [1] by using `[SEP] [CLS]` tokens to separate
sentences.
"""
story_lines_token_ids = [
tokenizer.add_special_tokens_single_sequence(tokenizer.encode(line))
for line in story_lines
]
summary_lines_token_ids = [
tokenizer.add_special_tokens_single_sequence(tokenizer.encode(line))
for line in summary_lines
]
story_token_ids = [
token for sentence in story_lines_token_ids for token in sentence
]
summary_token_ids = [
token for sentence in summary_lines_token_ids for token in sentence
]
return story_token_ids, summary_token_ids
def compute_token_type_ids(batch, separator_token_id):
""" Segment embeddings as described in [1]
The values {0,1} were found in the repository [2].
Attributes:
batch: torch.Tensor, size [batch_size, block_size]
Batch of input.
separator_token_id: int
The value of the token that separates the segments.
[1] Liu, Yang, and Mirella Lapata. "Text summarization with pretrained encoders."
arXiv preprint arXiv:1908.08345 (2019).
[2] https://github.com/nlpyang/PreSumm (/src/prepro/data_builder.py, commit fac1217)
"""
batch_embeddings = []
for sequence in batch:
sentence_num = 0
embeddings = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2)
batch_embeddings.append(embeddings)
return torch.tensor(batch_embeddings)