-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_tensor_parallel.py
164 lines (137 loc) · 6.16 KB
/
test_tensor_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import subprocess
import tempfile
import textwrap
# TORCH_LOGS=+dtensor CUDA_LAUNCH_BLOCKING=1 TORCH_USE_CUDA_DSA=1 PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
from transformers import is_torch_available
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaModel
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
)
if is_torch_available():
import torch
class TestTensorParallel(TestCasePlus):
def torchrun(self, script: str):
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
tmp.write(script)
tmp.flush()
tmp.seek(0)
cmd = (
f"torchrun --nproc_per_node {torch.cuda.device_count()} --master_port {get_torch_dist_unique_port()} {tmp.name}"
).split()
# Note that the subprocess will be waited for here, and raise an error if not successful
try:
_ = subprocess.run(cmd, capture_output=True, env=self.get_env(), text=True, check=True)
except subprocess.CalledProcessError as e:
raise Exception(f"The following error was captured: {e.stderr}")
@require_torch_multi_gpu
def test_tp(self):
distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_tp.py
""".split()
output_dir = self.get_auto_remove_tmp_dir()
args = f"--output_dir {output_dir} --report_to none".split()
cmd = ["torchrun"] + distributed_args + args
print(cmd)
execute_subprocess_async(cmd, env=self.get_env())
# successful return here == success - any errors would have caused an error in the sub-call
@require_torch_multi_gpu
def test_loading_memory_consumption(self):
script_to_run = textwrap.dedent(
"""
import torch
import os
from transformers import AutoModelForCausalLM
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
device = torch.device(f"cuda:{rank}")
torch.distributed.init_process_group("nccl", device_id=device)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, tp_plan="auto")
torch.distributed.barrier()
# The expected model memory footprint. We add 1 as not all the modules are split (e.g. the embeddings)
expected_model_memory_per_device = (16 / world_size) + 1
overhead_factor = 1.2
# Check that we do not use more than the expected sharded size during initialization
if torch.cuda.max_memory_allocated(device) / 1024**3 > expected_model_memory_per_device * overhead_factor:
raise ValueError("Loading the model used more than the expected fraction of model size per device")
torch.distributed.barrier()
torch.distributed.destroy_process_group()
"""
)
self.torchrun(script_to_run)
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
# CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/tp/test_tp.py
# or
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
if not is_torch_available():
exit(0)
# Test settings
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
bs = 1
seqlen = 4096
# Get distributed settings
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
# Initialize distributed
device = torch.device(f"cuda:{rank}")
torch.distributed.init_process_group("nccl", device_id=device)
device_mesh = torch.distributed.init_device_mesh("cuda", (world_size,))
# Get model config
config = LlamaConfig.from_pretrained(model_id)
config.hidden_size = 2048
config.attention_bias = False
# Instantiate model
with device:
model = LlamaModel(config).to(dtype=torch.float16)
model.eval()
# Tensor Parallel
if world_size > 1:
model.tensor_parallel(device_mesh)
# Run model
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
# Test cuda graphing explicitly
with torch.cuda.device(device):
print("Cuda graphing")
with torch.no_grad():
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
# CUDA Graph setup
s = torch.cuda.Stream(device=device)
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for i in range(3):
out = model(inputs)
torch.cuda.current_stream().wait_stream(s)
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
out = model(inputs)
for _ in range(2):
g.replay()
s.synchronize()
assert out.last_hidden_state.shape == torch.Size([bs, seqlen, config.hidden_size])
# Test compile
with torch.no_grad():
out = model(inputs)
model.forward = torch.compile(model.forward, mode="reduce-overhead")
out = model(inputs)
out = model(inputs)