-
Notifications
You must be signed in to change notification settings - Fork 28.5k
/
Copy pathtest_optimization.py
232 lines (203 loc) · 8.42 KB
/
test_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
get_wsd_schedule,
)
def unwrap_schedule(scheduler, num_steps=10):
lrs = []
for _ in range(num_steps):
lrs.append(scheduler.get_lr()[0])
scheduler.step()
return lrs
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
lrs = []
for step in range(num_steps):
lrs.append(scheduler.get_lr()[0])
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
file_name = os.path.join(tmpdirname, "schedule.bin")
torch.save(scheduler.state_dict(), file_name)
state_dict = torch.load(file_name, weights_only=False)
scheduler.load_state_dict(state_dict)
return lrs
@require_torch
class OptimizationTest(unittest.TestCase):
def assertListAlmostEqual(self, list1, list2, tol):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, delta=tol)
def test_adam_w(self):
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
target = torch.tensor([0.4, 0.2, -0.5])
criterion = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
optimizer = torch.optim.AdamW(params=[w], lr=2e-1, weight_decay=0.0)
for _ in range(100):
loss = criterion(w, target)
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)
def test_adafactor(self):
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
target = torch.tensor([0.4, 0.2, -0.5])
criterion = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
optimizer = Adafactor(
params=[w],
lr=1e-2,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
relative_step=False,
scale_parameter=False,
warmup_init=False,
)
for _ in range(1000):
loss = criterion(w, target)
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)
@require_torch
class ScheduleInitTest(unittest.TestCase):
m = nn.Linear(50, 50) if is_torch_available() else None
optimizer = torch.optim.AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
num_steps = 10
def assertListAlmostEqual(self, list1, list2, tol, msg=None):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, delta=tol, msg=msg)
def test_schedulers(self):
common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
scheds = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
get_wsd_schedule: (
{**common_kwargs, "num_decay_steps": 2, "min_lr_ratio": 0.0},
[0.0, 5.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 5.0],
),
}
for scheduler_func, data in scheds.items():
kwargs, expected_learning_rates = data
scheduler = scheduler_func(self.optimizer, **kwargs)
self.assertEqual(len([scheduler.get_lr()[0]]), 1)
lrs_1 = unwrap_schedule(scheduler, self.num_steps)
self.assertListAlmostEqual(
lrs_1,
expected_learning_rates,
tol=1e-2,
msg=f"failed for {scheduler_func} in normal scheduler",
)
scheduler = scheduler_func(self.optimizer, **kwargs)
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(scheduler) # wrap to test picklability of the schedule
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual(lrs_1, lrs_2, msg=f"failed for {scheduler_func} in save and reload")
def test_get_scheduler(self):
test_params = [
{
"name": "warmup_stable_decay",
"optimizer": self.optimizer,
"num_warmup_steps": 2,
"num_training_steps": 10,
"scheduler_specific_kwargs": {
"num_decay_steps": 2,
"warmup_type": "linear",
"decay_type": "linear",
},
},
{
"name": "warmup_stable_decay",
"optimizer": self.optimizer,
"num_warmup_steps": 2,
"num_training_steps": 10,
"scheduler_specific_kwargs": {
"num_decay_steps": 2,
"warmup_type": "cosine",
"decay_type": "cosine",
},
},
{
"name": "warmup_stable_decay",
"optimizer": self.optimizer,
"num_warmup_steps": 2,
"num_training_steps": 10,
"scheduler_specific_kwargs": {
"num_decay_steps": 2,
"warmup_type": "1-sqrt",
"decay_type": "1-sqrt",
},
},
{"name": "cosine", "optimizer": self.optimizer, "num_warmup_steps": 2, "num_training_steps": 10},
]
for param in test_params:
self.assertTrue(get_scheduler(**param), msg=f"failed for {param['name']} in get_scheduler")
class LambdaScheduleWrapper:
"""See https://github.com/huggingface/transformers/issues/21689"""
def __init__(self, fn):
self.fn = fn
def __call__(self, *args, **kwargs):
return self.fn(*args, **kwargs)
@classmethod
def wrap_scheduler(cls, scheduler):
scheduler.lr_lambdas = list(map(cls, scheduler.lr_lambdas))