-
Notifications
You must be signed in to change notification settings - Fork 28.4k
/
Copy pathtest_examples.py
126 lines (109 loc) · 4.22 KB
/
test_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import sys
import unittest
from unittest.mock import patch
import run_generation
import run_glue
import run_language_modeling
import run_squad
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument("-f")
args = parser.parse_args()
return args.f
class ExamplesTests(unittest.TestCase):
def test_run_glue(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = [
"run_glue.py",
"--data_dir=./examples/tests_samples/MRPC/",
"--task_name=mrpc",
"--do_train",
"--do_eval",
"--output_dir=./examples/tests_samples/temp_dir",
"--per_gpu_train_batch_size=2",
"--per_gpu_eval_batch_size=1",
"--learning_rate=1e-4",
"--max_steps=10",
"--warmup_steps=2",
"--overwrite_output_dir",
"--seed=42",
"--max_seq_length=128",
]
model_name = "--model_name_or_path=bert-base-uncased"
with patch.object(sys, "argv", testargs + [model_name]):
result = run_glue.main()
del result["loss"]
for value in result.values():
self.assertGreaterEqual(value, 0.75)
def test_run_language_modeling(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = """
run_language_modeling.py
--model_name_or_path distilroberta-base
--model_type roberta
--mlm
--line_by_line
--train_data_file ./tests/fixtures/sample_text.txt
--eval_data_file ./tests/fixtures/sample_text.txt
--output_dir ./tests/fixtures
--overwrite_output_dir
--do_train
--do_eval
--num_train_epochs=1
--no_cuda
""".split()
with patch.object(sys, "argv", testargs):
result = run_language_modeling.main()
self.assertLess(result["perplexity"], 35)
def test_run_squad(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = [
"run_squad.py",
"--data_dir=./examples/tests_samples/SQUAD",
"--model_name=bert-base-uncased",
"--output_dir=./examples/tests_samples/temp_dir",
"--max_steps=10",
"--warmup_steps=2",
"--do_train",
"--do_eval",
"--version_2_with_negative",
"--learning_rate=2e-4",
"--per_gpu_train_batch_size=2",
"--per_gpu_eval_batch_size=1",
"--overwrite_output_dir",
"--seed=42",
]
model_type, model_name = ("--model_type=bert", "--model_name_or_path=bert-base-uncased")
with patch.object(sys, "argv", testargs + [model_type, model_name]):
result = run_squad.main()
self.assertGreaterEqual(result["f1"], 30)
self.assertGreaterEqual(result["exact"], 30)
def test_generation(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
model_type, model_name = ("--model_type=openai-gpt", "--model_name_or_path=openai-gpt")
with patch.object(sys, "argv", testargs + [model_type, model_name]):
result = run_generation.main()
self.assertGreaterEqual(len(result[0]), 10)