-
Notifications
You must be signed in to change notification settings - Fork 28.7k
/
Copy pathtest_modeling_transfo_xl.py
664 lines (618 loc) · 21.1 KB
/
test_modeling_transfo_xl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, require_torch_multigpu, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, TransfoXLModel
from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST
class TransfoXLModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 14
self.seq_length = 7
self.mem_len = 30
self.key_length = self.seq_length + self.mem_len
self.clamp_len = 15
self.is_training = True
self.use_labels = True
self.vocab_size = 99
self.cutoffs = [10, 50, 80]
self.hidden_size = 32
self.d_embed = 32
self.num_attention_heads = 4
self.d_head = 8
self.d_inner = 128
self.div_val = 2
self.num_hidden_layers = 5
self.scope = None
self.seed = 1
self.eos_token_id = 0
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.hidden_size,
d_embed=self.d_embed,
n_head=self.num_attention_heads,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id,
return_dict=True,
)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.to(torch_device)
model.eval()
outputs1 = model(input_ids_1)
outputs2 = model(input_ids_2, outputs1["mems"])
outputs = {
"hidden_states_1": outputs1["last_hidden_state"],
"mems_1": outputs1["mems"],
"hidden_states_2": outputs2["last_hidden_state"],
"mems_2": outputs2["mems"],
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertEqual(result["hidden_states_1"].shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result["hidden_states_2"].shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertListEqual(
[mem.shape for mem in result["mems_1"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
self.parent.assertListEqual(
[mem.shape for mem in result["mems_2"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.to(torch_device)
model.eval()
lm_logits_1 = model(input_ids_1)["prediction_scores"]
outputs1 = model(input_ids_1, labels=lm_labels)
lm_logits_2 = model(input_ids_2, mems=outputs1["mems"])["prediction_scores"]
outputs2 = model(input_ids_2, labels=lm_labels, mems=outputs1["mems"])
outputs = {
"loss_1": outputs1["losses"],
"mems_1": outputs1["mems"],
"lm_logits_1": lm_logits_1,
"loss_2": outputs2["losses"],
"mems_2": outputs2["mems"],
"lm_logits_2": lm_logits_2,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertEqual(result["loss_1"].shape, (self.batch_size, self.seq_length - 1))
self.parent.assertEqual(result["lm_logits_1"].shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in result["mems_1"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
self.parent.assertEqual(result["loss_2"].shape, (self.batch_size, self.seq_length - 1))
self.parent.assertEqual(result["lm_logits_2"].shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in result["mems_2"]],
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
@require_torch
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
test_pruning = False
test_torchscript = False
test_resize_embeddings = True
def check_cutoffs_and_n_token(
self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size
):
# Check that the cutoffs were modified accordingly
for i in range(len(copied_cutoffs)):
if i < layer:
self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i])
if model_class == TransfoXLLMHeadModel:
self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i])
if i < len(model.config.cutoffs):
self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i])
else:
self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i] + resized_value)
if model_class == TransfoXLLMHeadModel:
self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i] + resized_value)
if i < len(model.config.cutoffs):
self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i] + resized_value)
self.assertEqual(model_embed.n_token, vocab_size + resized_value)
if model_class == TransfoXLLMHeadModel:
self.assertEqual(model.crit.n_token, vocab_size + resized_value)
def setUp(self):
self.model_tester = TransfoXLModelTester(self)
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_transfo_xl_model(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
self.model_tester.check_transfo_xl_model_output(output_result)
def test_transfo_xl_lm_head(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
self.model_tester.check_transfo_xl_lm_head_output(output_result)
@require_torch_multigpu
def test_multigpu_data_parallel_forward(self):
# Opt-out of this test.
pass
@slow
def test_model_from_pretrained(self):
for model_name in TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TransfoXLModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_resize_tokens_embeddings(self):
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = [emb.weight.clone() for emb in model_embed.emb_layers]
# Retrieve the cutoffs and copy them
copied_cutoffs = copy.copy(model_embed.cutoffs)
test_layers = [x for x in range(config.div_val)]
for layer in test_layers:
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10, layer)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] + 10)
# Check that the cutoffs were modified accordingly
self.check_cutoffs_and_n_token(
copied_cutoffs, layer, model_embed, model, model_class, 10, model_vocab_size
)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**inputs_dict)
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 5, layer)
self.assertEqual(model.config.vocab_size, model_vocab_size - 5)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] - 5)
# Check that the cutoffs were modified accordingly
self.check_cutoffs_and_n_token(
copied_cutoffs, layer, model_embed, model, model_class, -5, model_vocab_size
)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 5 - 1)
model(**inputs_dict)
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings[layer], model_embed.emb_layers[layer].weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Reset model embeddings to original size
model.resize_token_embeddings(model_vocab_size, layer)
self.assertEqual(model_vocab_size, model.config.vocab_size)
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0])
class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_transfo_xl_wt103(self):
model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
model.to(torch_device)
input_ids = torch.tensor(
[
[
33,
1297,
2,
1,
1009,
4,
1109,
11739,
4762,
358,
5,
25,
245,
22,
1706,
17,
20098,
5,
3215,
21,
37,
1110,
3,
13,
1041,
4,
24,
603,
490,
2,
71477,
20098,
104447,
2,
20961,
1,
2604,
4,
1,
329,
3,
6224,
831,
16002,
2,
8,
603,
78967,
29546,
23,
803,
20,
25,
416,
5,
8,
232,
4,
277,
6,
1855,
4601,
3,
29546,
54,
8,
3609,
5,
57211,
49,
4,
1,
277,
18,
8,
1755,
15691,
3,
341,
25,
416,
693,
42573,
71,
17,
401,
94,
31,
17919,
2,
29546,
7873,
18,
1,
435,
23,
11011,
755,
5,
5167,
3,
7983,
98,
84,
2,
29546,
3267,
8,
3609,
4,
1,
4865,
1075,
2,
6087,
71,
6,
346,
8,
5854,
3,
29546,
824,
1400,
1868,
2,
19,
160,
2,
311,
8,
5496,
2,
20920,
17,
25,
15097,
3,
24,
24,
0,
]
],
dtype=torch.long,
device=torch_device,
)
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
expected_output_ids = [
33,
1297,
2,
1,
1009,
4,
1109,
11739,
4762,
358,
5,
25,
245,
22,
1706,
17,
20098,
5,
3215,
21,
37,
1110,
3,
13,
1041,
4,
24,
603,
490,
2,
71477,
20098,
104447,
2,
20961,
1,
2604,
4,
1,
329,
3,
6224,
831,
16002,
2,
8,
603,
78967,
29546,
23,
803,
20,
25,
416,
5,
8,
232,
4,
277,
6,
1855,
4601,
3,
29546,
54,
8,
3609,
5,
57211,
49,
4,
1,
277,
18,
8,
1755,
15691,
3,
341,
25,
416,
693,
42573,
71,
17,
401,
94,
31,
17919,
2,
29546,
7873,
18,
1,
435,
23,
11011,
755,
5,
5167,
3,
7983,
98,
84,
2,
29546,
3267,
8,
3609,
4,
1,
4865,
1075,
2,
6087,
71,
6,
346,
8,
5854,
3,
29546,
824,
1400,
1868,
2,
19,
160,
2,
311,
8,
5496,
2,
20920,
17,
25,
15097,
3,
24,
24,
0,
33,
1,
142,
1298,
188,
2,
29546,
113,
8,
3654,
4,
1,
1109,
7136,
833,
3,
13,
1645,
4,
29546,
11,
104,
7,
1,
1109,
532,
7129,
2,
10,
83507,
2,
1162,
1123,
2,
6,
7245,
10,
2,
5,
11,
104,
7,
1,
1109,
532,
7129,
2,
10,
24,
24,
10,
22,
10,
13,
770,
5863,
4,
7245,
10,
]
# In 1991, the remains of Russian Tsar Nicholas II and his family ( except for
# Alexei and Maria ) are discovered. The voice of young son, Tsarevich Alexei
# Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young
# Grigori Rasputin is asked by his father and a group of men to perform magic.
# Rasputin has a vision and denounces one of the men as a horse thief. Although
# his father initially slaps him for making such an accusation, Rasputin watches
# as the man is chased outside and beaten. Twenty years later, Rasputin sees a
# vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly
# becomes famous, with people, even a bishop, begging for his blessing. In the
# early 20th century, Rasputin became a symbol of the Russian Orthodox Church.
# The image of Rasputin was used in the Russian national anthem, " Nearer, My God,
# to Heaven ", and was used in the Russian national anthem, " " ( " The Great Spirit
# of Heaven "
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)