@@ -92,11 +92,6 @@ def _cfg(url='', **kwargs):
92
92
interpolation = 'bilinear' ),
93
93
94
94
# NOTE experimenting with alternate attention
95
- 'eca_efficientnet_b0' : _cfg (
96
- url = '' ),
97
- 'gc_efficientnet_b0' : _cfg (
98
- url = '' ),
99
-
100
95
'efficientnet_b0' : _cfg (
101
96
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth' ),
102
97
'efficientnet_b1' : _cfg (
@@ -169,7 +164,7 @@ def _cfg(url='', **kwargs):
169
164
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_t_agc-3620981a.pth' ,
170
165
input_size = (3 , 224 , 224 ), test_input_size = (3 , 288 , 288 ), pool_size = (7 , 7 ), crop_pct = 1.0 ),
171
166
'gc_efficientnetv2_rw_t' : _cfg (
172
- url = '' ,
167
+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gc_efficientnetv2_rw_t_agc-927a0bde.pth ' ,
173
168
input_size = (3 , 224 , 224 ), test_input_size = (3 , 288 , 288 ), pool_size = (7 , 7 ), crop_pct = 1.0 ),
174
169
'efficientnetv2_rw_s' : _cfg (
175
170
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665.pth' ,
@@ -362,7 +357,7 @@ def _cfg(url='', **kwargs):
362
357
mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
363
358
input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
364
359
'tf_efficientnetv2_xl_in21ft1k' : _cfg (
365
- url = '' ,
360
+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21ft1k-06c35c48.pth ' ,
366
361
mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
367
362
input_size = (3 , 384 , 384 ), test_input_size = (3 , 512 , 512 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
368
363
@@ -379,7 +374,7 @@ def _cfg(url='', **kwargs):
379
374
mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ), num_classes = 21843 ,
380
375
input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
381
376
'tf_efficientnetv2_xl_in21k' : _cfg (
382
- url = '' ,
377
+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21k-fd7e8abf.pth ' ,
383
378
mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ), num_classes = 21843 ,
384
379
input_size = (3 , 384 , 384 ), test_input_size = (3 , 512 , 512 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
385
380
@@ -1276,26 +1271,6 @@ def efficientnet_b0(pretrained=False, **kwargs):
1276
1271
return model
1277
1272
1278
1273
1279
- @register_model
1280
- def eca_efficientnet_b0 (pretrained = False , ** kwargs ):
1281
- """ EfficientNet-B0 w/ ECA attn """
1282
- # NOTE experimental config
1283
- model = _gen_efficientnet (
1284
- 'eca_efficientnet_b0' , se_layer = 'ecam' , channel_multiplier = 1.0 , depth_multiplier = 1.0 ,
1285
- pretrained = pretrained , ** kwargs )
1286
- return model
1287
-
1288
-
1289
- @register_model
1290
- def gc_efficientnet_b0 (pretrained = False , ** kwargs ):
1291
- """ EfficientNet-B0 w/ GlobalContext """
1292
- # NOTE experminetal config
1293
- model = _gen_efficientnet (
1294
- 'gc_efficientnet_b0' , se_layer = 'gc' , channel_multiplier = 1.0 , depth_multiplier = 1.0 ,
1295
- pretrained = pretrained , ** kwargs )
1296
- return model
1297
-
1298
-
1299
1274
@register_model
1300
1275
def efficientnet_b1 (pretrained = False , ** kwargs ):
1301
1276
""" EfficientNet-B1 """
0 commit comments