|
| 1 | +# ------------------------------------------------------------------ |
| 2 | +# Copyright (c) Nvidia |
| 3 | +# Licensed under BSD 3-Clause "New" or "Revised" License |
| 4 | +# Modified from Apex (https://github.com/NVIDIA/apex/) |
| 5 | +# ------------------------------------------------------------------ |
| 6 | + |
| 7 | +import torch |
| 8 | +from setuptools import setup, find_packages |
| 9 | +import subprocess |
| 10 | +from distutils.extension import Extension |
| 11 | + |
| 12 | +import sys |
| 13 | +import warnings |
| 14 | +import os |
| 15 | +import numpy as np |
| 16 | + |
| 17 | +# ninja build does not work unless include_dirs are abs path |
| 18 | +this_dir = os.path.dirname(os.path.abspath(__file__)) |
| 19 | + |
| 20 | +# Obtain the numpy include directory. This logic works across numpy versions. |
| 21 | +try: |
| 22 | + numpy_include = np.get_include() |
| 23 | +except AttributeError: |
| 24 | + numpy_include = np.get_numpy_include() |
| 25 | + |
| 26 | +if not torch.cuda.is_available(): |
| 27 | + # https://github.com/NVIDIA/apex/issues/486 |
| 28 | + # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), |
| 29 | + # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). |
| 30 | + print('\nWarning: Torch did not find available GPUs on this system.\n', |
| 31 | + 'If your intention is to cross-compile, this is not an error.\n' |
| 32 | + 'Volta (compute capability 7.0), and Turing (compute capability 7.5).\n' |
| 33 | + 'If you wish to cross-compile for a single specific architecture,\n' |
| 34 | + 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n') |
| 35 | + if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: |
| 36 | + os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" |
| 37 | + |
| 38 | +print("torch.__version__ = ", torch.__version__) |
| 39 | +TORCH_MAJOR = int(torch.__version__.split('.')[0]) |
| 40 | +TORCH_MINOR = int(torch.__version__.split('.')[1]) |
| 41 | + |
| 42 | +cmdclass = {} |
| 43 | +ext_modules = [] |
| 44 | +extras = {} |
| 45 | + |
| 46 | +from torch.utils.cpp_extension import BuildExtension |
| 47 | +from torch.utils.cpp_extension import CUDAExtension |
| 48 | +cmdclass['build_ext'] = BuildExtension |
| 49 | + |
| 50 | +def check_cuda_torch_binary_vs_bare_metal(cuda_dir): |
| 51 | + raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) |
| 52 | + output = raw_output.split() |
| 53 | + release_idx = output.index("release") + 1 |
| 54 | + release = output[release_idx].split(".") |
| 55 | + bare_metal_major = release[0] |
| 56 | + bare_metal_minor = release[1][0] |
| 57 | + torch_binary_major = torch.version.cuda.split(".")[0] |
| 58 | + torch_binary_minor = torch.version.cuda.split(".")[1] |
| 59 | + |
| 60 | + print("\nCompiling cuda extensions with") |
| 61 | + print(raw_output + "from " + cuda_dir + "/bin\n") |
| 62 | + |
| 63 | + if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): |
| 64 | + raise RuntimeError("Cuda extensions are being compiled with a version of Cuda that does " + |
| 65 | + "not match the version used to compile Pytorch binaries. " + |
| 66 | + "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + |
| 67 | + "In some cases, a minor-version mismatch will not cause later errors") |
| 68 | + |
| 69 | +# Set up macros for forward/backward compatibility hack around |
| 70 | +# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e |
| 71 | +# and |
| 72 | +# https://github.com/NVIDIA/apex/issues/456 |
| 73 | +# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac |
| 74 | +version_ge_1_1 = [] |
| 75 | +if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0): |
| 76 | + version_ge_1_1 = ['-DVERSION_GE_1_1'] |
| 77 | +version_ge_1_3 = [] |
| 78 | +if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2): |
| 79 | + version_ge_1_3 = ['-DVERSION_GE_1_3'] |
| 80 | +version_ge_1_5 = [] |
| 81 | +if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4): |
| 82 | + version_ge_1_5 = ['-DVERSION_GE_1_5'] |
| 83 | +version_dependent_macros = version_ge_1_1 + version_ge_1_3 + version_ge_1_5 |
| 84 | + |
| 85 | +check_cuda_torch_binary_vs_bare_metal(torch.utils.cpp_extension.CUDA_HOME) |
| 86 | + |
| 87 | +ext_modules.append( |
| 88 | + Extension( |
| 89 | + "cpu_nms", |
| 90 | + ["cpu_nms.pyx"], |
| 91 | + extra_compile_args={'cxx': ['/MD']}, |
| 92 | + include_dirs = [numpy_include] |
| 93 | + ), |
| 94 | +) |
| 95 | + |
| 96 | +ext_modules.append( |
| 97 | + CUDAExtension(name='gpu_nms', |
| 98 | + sources=['nms_kernel.cu', 'gpu_nms.pyx'], |
| 99 | + include_dirs = [numpy_include], |
| 100 | + extra_compile_args={'cxx': ['-O3',] + version_dependent_macros, |
| 101 | + 'nvcc':['-O3', |
| 102 | + '-gencode', 'arch=compute_70,code=sm_70', |
| 103 | + '-U__CUDA_NO_HALF_OPERATORS__', |
| 104 | + '-U__CUDA_NO_HALF_CONVERSIONS__', |
| 105 | + '--expt-relaxed-constexpr', |
| 106 | + '--expt-extended-lambda', |
| 107 | + '--use_fast_math'] + version_dependent_macros})) |
| 108 | + |
| 109 | +setup( |
| 110 | + name='nms', |
| 111 | + version='0.1', |
| 112 | + description='', |
| 113 | + ext_modules=ext_modules, |
| 114 | + cmdclass=cmdclass, |
| 115 | + extras_require=extras, |
| 116 | +) |
0 commit comments