Skip to content

Commit 64a3bf0

Browse files
committed
Pareto Distribution
1 parent 23d9541 commit 64a3bf0

File tree

2 files changed

+67
-1
lines changed

2 files changed

+67
-1
lines changed

19.Chi_Square_Distribution.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
'''
2-
Chi Square Distribution using NumPy Array and Matplotlib.pyplotP:
2+
Chi Square Distribution using NumPy Array and Matplotlib.pyplot:
33
44
Chi Square Distribution ka use kiya jata hai jab ek jaise 2 chijo ke beach me realtion nikalna ho tab is distribution ka use kiya jata hai.
55

21.Pareto_Distribution.py

Lines changed: 66 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,66 @@
1+
'''
2+
Pareto Distribution using matplotlib.pyplot, numpy.random module and seaborn librarys by hey sushil:
3+
4+
Pareto Distribution ka naam Itelian economist and sociologist, Vilfredo Pareto par pada hain. Isko Pareto principle bhi kahte hain.
5+
6+
Pareto Distribution ka use hota hai:
7+
8+
1. Social phenomena
9+
2. Scientific phenomena
10+
3. Geophysical phenomena
11+
12+
Pareto Distribution kya hai?
13+
14+
1. Pareto Distribution ko 80% 20% rule ke naam se jana jata hai.
15+
2. Pareto Distribution kisi bhi range ke andar ke situation ko bata hai.
16+
17+
Pareto Distribution ke examples:
18+
19+
1. Customer support: Yaha par kaha jata hai ki 80% problem kewal 20% customer ko hi hoti hai.
20+
2. Economics: World me 80% paisa 20% logo ke pass hi pada hai.
21+
3. Human Size: Cities kam hai aur villages jada hain
22+
4. File size: Internet me TCP Protocole use hota hai jisme few large file aur many more small files hoti hain.
23+
24+
Is tarike ke bahot sare example bataye ja sakte hain Pareto Distribution ke jo ki 80% 20% rule me best fit baithte hain.
25+
26+
Pareto Distribution ke best practical application:
27+
28+
1. Business Management: Is case me business me kiya gaya 20% effort jo specific alag alag business activiy karne par 80% result deta hai. Is tarike se important segments par focuss karke business ki efficency ko badhya ja sakta hai.
29+
30+
2. Company revenues: Is case me company dekhti hai ki 80% annual revenue kewal 20% current customers se hi aajata hai. Is tarike se company in customers ko satify karne me jada focuss karta hai. Isi tarkike se aane wale 80% compalin 20% customer se hi aate hain. Jinko resolve karne par company focuss karta hai. Aur unke satify hone par agle 20% customers ko satify karne me company lag jata hai.
31+
32+
3. Employee Evaluation: 80-20 ratio ka use kar ke compnay apne employee ke performance par bhi focuss karta hai. Jisme ki 80% work result company ke 20% employee se aata hai. Aur is tarike se company apne best 20% employee ko motivated rakhne ke liye rewards deta rahta hai. Aur baki employees ko hard work karne ka message bhi deta hai.
33+
34+
Is tarike se hi company me hone wali 80% problem company ke 20% employees ke dwara hi ki jati hai.
35+
36+
Pareto Distribution ki limitations:
37+
38+
1. 80-20 ka ratio jarui nahi hai ki hamesa 80 aur 20 me hi aaye. Ho sakta hai ki kabhi 90 aajaye to isse ye nahi ki 90+20 = 110 kar diya jaye.
39+
2. Means Pareto Distribution ka use kar ke ye pata chal jata hai ki ratio ke behalf par kis area par jada focuss karne ki jarurat hai.
40+
3. Pareto Distribution ya bahi bhi probabiliy ke case hamesa puri tarike se sahi nahi ho sakte hain.
41+
42+
numpy.random.pareto() method ke arguments:
43+
44+
1. a: shape parameter
45+
2. size: shape of return array
46+
47+
Pareto me har value posstive hi milega.
48+
'''
49+
50+
import numpy.random as r
51+
import matplotlib.pyplot as plt
52+
import seaborn as sns
53+
54+
pareto = r.pareto(a=1, size=(10))
55+
# print('\n',pareto)
56+
57+
sns.distplot(r.pareto(a=1, size=(100)), hist=False, label=1)
58+
sns.distplot(r.pareto(a=2, size=(100)), hist=False, label=2)
59+
sns.distplot(r.pareto(a=3, size=(100)), hist=False, label=3)
60+
sns.distplot(r.pareto(a=4, size=(100)), hist=False, label=4)
61+
62+
# plt
63+
plt.xlabel('Range X')
64+
plt.ylabel('Frequecy Y')
65+
plt.show()
66+

0 commit comments

Comments
 (0)