|
| 1 | +''' |
| 2 | +Pareto Distribution using matplotlib.pyplot, numpy.random module and seaborn librarys by hey sushil: |
| 3 | +
|
| 4 | +Pareto Distribution ka naam Itelian economist and sociologist, Vilfredo Pareto par pada hain. Isko Pareto principle bhi kahte hain. |
| 5 | +
|
| 6 | +Pareto Distribution ka use hota hai: |
| 7 | +
|
| 8 | +1. Social phenomena |
| 9 | +2. Scientific phenomena |
| 10 | +3. Geophysical phenomena |
| 11 | +
|
| 12 | +Pareto Distribution kya hai? |
| 13 | +
|
| 14 | +1. Pareto Distribution ko 80% 20% rule ke naam se jana jata hai. |
| 15 | +2. Pareto Distribution kisi bhi range ke andar ke situation ko bata hai. |
| 16 | +
|
| 17 | +Pareto Distribution ke examples: |
| 18 | +
|
| 19 | +1. Customer support: Yaha par kaha jata hai ki 80% problem kewal 20% customer ko hi hoti hai. |
| 20 | +2. Economics: World me 80% paisa 20% logo ke pass hi pada hai. |
| 21 | +3. Human Size: Cities kam hai aur villages jada hain |
| 22 | +4. File size: Internet me TCP Protocole use hota hai jisme few large file aur many more small files hoti hain. |
| 23 | +
|
| 24 | +Is tarike ke bahot sare example bataye ja sakte hain Pareto Distribution ke jo ki 80% 20% rule me best fit baithte hain. |
| 25 | +
|
| 26 | +Pareto Distribution ke best practical application: |
| 27 | +
|
| 28 | +1. Business Management: Is case me business me kiya gaya 20% effort jo specific alag alag business activiy karne par 80% result deta hai. Is tarike se important segments par focuss karke business ki efficency ko badhya ja sakta hai. |
| 29 | +
|
| 30 | +2. Company revenues: Is case me company dekhti hai ki 80% annual revenue kewal 20% current customers se hi aajata hai. Is tarike se company in customers ko satify karne me jada focuss karta hai. Isi tarkike se aane wale 80% compalin 20% customer se hi aate hain. Jinko resolve karne par company focuss karta hai. Aur unke satify hone par agle 20% customers ko satify karne me company lag jata hai. |
| 31 | +
|
| 32 | +3. Employee Evaluation: 80-20 ratio ka use kar ke compnay apne employee ke performance par bhi focuss karta hai. Jisme ki 80% work result company ke 20% employee se aata hai. Aur is tarike se company apne best 20% employee ko motivated rakhne ke liye rewards deta rahta hai. Aur baki employees ko hard work karne ka message bhi deta hai. |
| 33 | +
|
| 34 | +Is tarike se hi company me hone wali 80% problem company ke 20% employees ke dwara hi ki jati hai. |
| 35 | +
|
| 36 | +Pareto Distribution ki limitations: |
| 37 | +
|
| 38 | +1. 80-20 ka ratio jarui nahi hai ki hamesa 80 aur 20 me hi aaye. Ho sakta hai ki kabhi 90 aajaye to isse ye nahi ki 90+20 = 110 kar diya jaye. |
| 39 | +2. Means Pareto Distribution ka use kar ke ye pata chal jata hai ki ratio ke behalf par kis area par jada focuss karne ki jarurat hai. |
| 40 | +3. Pareto Distribution ya bahi bhi probabiliy ke case hamesa puri tarike se sahi nahi ho sakte hain. |
| 41 | +
|
| 42 | +numpy.random.pareto() method ke arguments: |
| 43 | +
|
| 44 | +1. a: shape parameter |
| 45 | +2. size: shape of return array |
| 46 | +
|
| 47 | +Pareto me har value posstive hi milega. |
| 48 | +''' |
| 49 | + |
| 50 | +import numpy.random as r |
| 51 | +import matplotlib.pyplot as plt |
| 52 | +import seaborn as sns |
| 53 | + |
| 54 | +pareto = r.pareto(a=1, size=(10)) |
| 55 | +# print('\n',pareto) |
| 56 | + |
| 57 | +sns.distplot(r.pareto(a=1, size=(100)), hist=False, label=1) |
| 58 | +sns.distplot(r.pareto(a=2, size=(100)), hist=False, label=2) |
| 59 | +sns.distplot(r.pareto(a=3, size=(100)), hist=False, label=3) |
| 60 | +sns.distplot(r.pareto(a=4, size=(100)), hist=False, label=4) |
| 61 | + |
| 62 | +# plt |
| 63 | +plt.xlabel('Range X') |
| 64 | +plt.ylabel('Frequecy Y') |
| 65 | +plt.show() |
| 66 | + |
0 commit comments