1
+ '''
2
+ Beta distribution using matplotlib.pyplot, numpy.random module and seaborn librarys by hey sushil:
3
+
4
+ Probability theory ke andar aur statistics me isko continuous probability distribution familiy me rakha gaya hai.
5
+
6
+ Beta distribution ko [0, 1] interval ke beach me define kiya jata hai.
7
+
8
+ Beta distribution ko 2 possitive paramerters se denote kiya jata hai:
9
+ 1. alpha
10
+ 2. beta
11
+
12
+ Beta distribution ke andar ye dono parameters ye kaam karte hain:
13
+ 1. Random varibale ke exponent ke roop me hota hai.
14
+ 2. Durshra, ye distribution ke shape ko control karta hai.
15
+ 3. Agar isko multiple varaible me generalize kiya jaye to uss case me ye- Dirichlet distributon ban jata hai.
16
+
17
+ Beta distribution ka use random variable ya matrix model ke andar ek limited length me hi kai shape me change kiya ja sake uske liye kiya jata hai.
18
+
19
+ Beta distribution ka best use random variables ke sath percantages and proportions nikalne me kiya jata hai.
20
+
21
+ Kuch important points:
22
+
23
+ 1. Beta distribution, ek special case hai Dirichlet distribution ka.
24
+ 2. Beta distribution, Gamma distribution se related hai.
25
+ 3. Beta distribution, ka use Bayesian interface aur order statistics me bhi kiya jata hai.
26
+
27
+ Note: Beta function bhi hota hai but wo math me hota hai. Iss ko Eular integral of fist kind bhi kahte hain.
28
+ Ye special type ka function hai jo gamma function aur Binomial coefficent ke pass hota hai.
29
+
30
+ numpy.random.beta method arguments:
31
+ a: Float or array like float values and non-negative (for Alpha)
32
+ b: Float or array like float values and non-negative (for Beta)
33
+ size: int or tuple of int values in return
34
+ '''
35
+
36
+ import numpy .random as r
37
+ import seaborn as sns
38
+ import matplotlib .pyplot as plt
39
+
40
+ # print('\n', r.beta(a=0.5, b=0.5, size=(10)))
41
+
42
+ # a and b both on same range
43
+ sns .distplot (r .beta (a = 0.5 , b = 0.5 , size = (100 ,100 )), hist = False , label = 'a=0.5 b=0.5' )
44
+
45
+ # a point high and b point low to show hight to low ratio
46
+ sns .distplot (r .beta (a = 5 , b = 1 , size = (100 ,100 )), hist = False , label = 'a=5 b=1' )
47
+
48
+ sns .distplot (r .beta (a = 1 , b = 5 , size = (100 ,100 )), hist = False , label = 'a=1 b=5' )
49
+
50
+ sns .distplot (r .beta (a = 2 , b = 2 , size = (100 ,100 )), hist = False , label = 'a=2 b=2' )
51
+
52
+ sns .distplot (r .beta (a = 2 , b = 5 , size = (100 ,100 )), hist = False , label = 'a=2 b=5' )
53
+
54
+ # plt mehtods to beutify the result
55
+ # plt.xlim(0,1)
56
+ # plt.ylim(0,2.5)
57
+ plt .xlabel ('Range of X' )
58
+ plt .ylabel ('Frequcry of Y' )
59
+ plt .title ('Beta Distribution' )
60
+
61
+ plt .show ()
0 commit comments