forked from leoxiaobin/deep-high-resolution-net.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·180 lines (151 loc) · 6.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# ------------------------------------------------------------------------------
# pose.pytorch
# Copyright (c) 2018-present Microsoft
# Licensed under The Apache-2.0 License [see LICENSE for details]
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import pprint
import numpy as np
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.models import create_model
import _init_paths
from config import cfg
from config import update_config
from core.loss import JointsMSELoss
from core.function import validate, validate_TC
from utils.utils import create_logger
import dataset
import models
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='')
parser.add_argument('--dataDir',
help='data directory',
type=str,
default='')
parser.add_argument('--prevModelDir',
help='prev Model directory',
type=str,
default='')
args = parser.parse_args()
return args
def main():
args = parse_args()
update_config(cfg, args)
logger, final_output_dir, tb_log_dir = create_logger(
cfg, args.cfg, 'valid')
logger.info(pprint.pformat(args))
logger.info(cfg)
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
# if cfg.MODEL.NAME == 'faster_vit_4_21k_224' or cfg.MODEL.NAME == 'faster_vit_0_224':
# model = create_model(cfg.MODEL.NAME,
# pretrained=False,
# heatmap_sizes=(54,54),
# kernel_size=3,
# scriptable=True)
# else:
model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=False
)
if cfg.TEST.MODEL_FILE:
logger.info('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
else:
model_state_file = os.path.join(
final_output_dir, 'final_state.pth'
)
logger.info('=> loading model from {}'.format(model_state_file))
model.load_state_dict(torch.load(model_state_file))
# SAVE TORCH TRACE SCRIPT -------------------------------
model.cuda()
model.eval()
# if cfg.MODEL.NAME == 'faster_vit_4_21k_224' or cfg.MODEL.NAME == 'faster_vit_0_224':
# input = torch.randn(1,3,224,224).cuda()
# test_input = torch.ones(1,3,224,224).cuda()
# else:
input = torch.randn(1,3,256,256).cuda()
test_input = torch.ones(1,3,256,256).cuda()
torch.onnx.export(model, # 실행될 모델
input, # 모델 입력값 (튜플 또는 여러 입력값들도 가능)
"output/unreal/pose_fastvit/w32_256x256_adam_lr1e-3_Unreal/240604_1007_fastvit_unreal_scale.onnx", # 모델 저장 경로 (파일 또는 파일과 유사한 객체 모두 가능)
export_params=True, # 모델 파일 안에 학습된 모델 가중치를 저장할지의 여부
opset_version=11, # 모델을 변환할 때 사용할 ONNX 버전
do_constant_folding=True, # 최적화시 상수폴딩을 사용할지의 여부
input_names = ['input'], # 모델의 입력값을 가리키는 이름
output_names = ['output'], # 모델의 출력값을 가리키는 이름
dynamic_axes={'input' : {0 : 'batch_size'}, # 가변적인 길이를 가진 차원
'output' : {0 : 'batch_size'}})
input_hm = torch.randn(1,16,64,64).cuda()
trace_v = torch.jit.trace(model, input)
# trace_v = torch.jit.trace(model, (input, input_hm))
trace_v.save("output/unreal/pose_fastvit/w32_256x256_adam_lr1e-3_Unreal/240604_1007_fastvit_unreal_scale.pt")
# with torch.no_grad():
# torch.jit.save(trace_v, "/home/inrol/Downloads/trace_Unreal.pt")
test_output = model(test_input)
trace_output = trace_v(test_input)
# test_output, _, _ = model(test_input, input_hm)
# trace_output, _, _ = trace_v(test_input, input_hm)
print("output shape: ", np.shape(test_output), np.shape(trace_output))
print("model: ", test_output[0,5,35:40,30:35])
print("trace: ", trace_output[0,5,35:40,30:35])
# --------------------------------------------------------
model = torch.nn.DataParallel(model, device_ids=cfg.GPUS).cuda()
# define loss function (criterion) and optimizer
criterion = JointsMSELoss(
use_target_weight=cfg.LOSS.USE_TARGET_WEIGHT
).cuda()
# Data loading code
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
valid_dataset = eval('dataset.'+cfg.DATASET.DATASET)(
cfg, cfg.DATASET.ROOT, cfg.DATASET.TEST_SET, False,
transforms.Compose([
transforms.ToTensor(),
normalize,
])
)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=cfg.TEST.BATCH_SIZE_PER_GPU*len(cfg.GPUS),
shuffle=False,
num_workers=cfg.WORKERS,
pin_memory=True
)
# evaluate on validation set
validate(cfg, valid_loader, valid_dataset, model, criterion,
final_output_dir, tb_log_dir)
# validate_TC(cfg, valid_loader, valid_dataset, model, criterion,
# final_output_dir, tb_log_dir)
if __name__ == '__main__':
main()