forked from leoxiaobin/deep-high-resolution-net.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_fastvit.py
1106 lines (973 loc) · 36.5 KB
/
pose_fastvit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import torch
import torch.nn as nn
from typing import Union, Optional, List, Tuple
from functools import partial
import copy
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from .fastvit_modules.mobileone import MobileOneBlock
from .fastvit_modules.replknet import ReparamLargeKernelConv
BN_MOMENTUM = 0.1
logger = logging.getLogger(__name__)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
###############################################################################################
###############################################################################################
###############################################################################################
###############################################################################################
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 256, 256),
"pool_size": None,
"crop_pct": 0.95,
"interpolation": "bicubic",
"mean": (0.485, 0.456, 0.406),
"std": (0.229, 0.224, 0.225),
"classifier": "head",
**kwargs,
}
default_cfgs = {
"fastvit_t": _cfg(crop_pct=0.9),
"fastvit_s": _cfg(crop_pct=0.9),
"fastvit_m": _cfg(crop_pct=0.95),
}
def convolutional_stem(
in_channels: int, out_channels: int, inference_mode: bool = False
) -> nn.Sequential:
"""Build convolutional stem with MobileOne blocks.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
Returns:
nn.Sequential object with stem elements.
"""
return nn.Sequential(
MobileOneBlock(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1,
groups=1,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
),
MobileOneBlock(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1,
groups=out_channels,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
),
MobileOneBlock(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
),
)
class MHSA(nn.Module):
"""Multi-headed Self Attention module.
Source modified from:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
def __init__(
self,
dim: int,
head_dim: int = 32,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
"""Build MHSA module that can handle 3D or 4D input tensors.
Args:
dim: Number of embedding dimensions.
head_dim: Number of hidden dimensions per head. Default: ``32``
qkv_bias: Use bias or not. Default: ``False``
attn_drop: Dropout rate for attention tensor.
proj_drop: Dropout rate for projection tensor.
"""
super().__init__()
assert dim % head_dim == 0, "dim should be divisible by head_dim"
self.head_dim = head_dim
self.num_heads = dim // head_dim
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor) -> torch.Tensor:
shape = x.shape
B, C, H, W = shape
N = H * W
if len(shape) == 4:
x = torch.flatten(x, start_dim=2).transpose(-2, -1) # (B, N, C)
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
# trick here to make q@k.t more stable
attn = (q * self.scale) @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
if len(shape) == 4:
x = x.transpose(-2, -1).reshape(B, C, H, W)
return x
class PatchEmbed(nn.Module):
"""Convolutional patch embedding layer."""
def __init__(
self,
patch_size: int,
stride: int,
in_channels: int,
embed_dim: int,
inference_mode: bool = False,
) -> None:
"""Build patch embedding layer.
Args:
patch_size: Patch size for embedding computation.
stride: Stride for convolutional embedding layer.
in_channels: Number of channels of input tensor.
embed_dim: Number of embedding dimensions.
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
"""
super().__init__()
block = list()
block.append(
ReparamLargeKernelConv(
in_channels=in_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=stride,
groups=in_channels,
small_kernel=3,
inference_mode=inference_mode,
)
)
block.append(
MobileOneBlock(
in_channels=embed_dim,
out_channels=embed_dim,
kernel_size=1,
stride=1,
padding=0,
groups=1,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
)
)
self.proj = nn.Sequential(*block)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
return x
class RepMixer(nn.Module):
"""Reparameterizable token mixer.
For more details, please refer to our paper:
`FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization <https://arxiv.org/pdf/2303.14189.pdf>`_
"""
def __init__(
self,
dim,
kernel_size=3,
use_layer_scale=True,
layer_scale_init_value=1e-5,
inference_mode: bool = False,
):
"""Build RepMixer Module.
Args:
dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`.
kernel_size: Kernel size for spatial mixing. Default: 3
use_layer_scale: If True, learnable layer scale is used. Default: ``True``
layer_scale_init_value: Initial value for layer scale. Default: 1e-5
inference_mode: If True, instantiates model in inference mode. Default: ``False``
"""
super().__init__()
self.dim = dim
self.kernel_size = kernel_size
self.inference_mode = inference_mode
if inference_mode:
self.reparam_conv = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim,
kernel_size=self.kernel_size,
stride=1,
padding=self.kernel_size // 2,
groups=self.dim,
bias=True,
)
else:
self.norm = MobileOneBlock(
dim,
dim,
kernel_size,
padding=kernel_size // 2,
groups=dim,
use_act=False,
use_scale_branch=False,
num_conv_branches=0,
)
self.mixer = MobileOneBlock(
dim,
dim,
kernel_size,
padding=kernel_size // 2,
groups=dim,
use_act=False,
)
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if hasattr(self, "reparam_conv"):
x = self.reparam_conv(x)
return x
else:
if self.use_layer_scale:
x = x + self.layer_scale * (self.mixer(x) - self.norm(x))
else:
x = x + self.mixer(x) - self.norm(x)
return x
def reparameterize(self) -> None:
"""Reparameterize mixer and norm into a single
convolutional layer for efficient inference.
"""
if self.inference_mode:
return
self.mixer.reparameterize()
self.norm.reparameterize()
if self.use_layer_scale:
w = self.mixer.id_tensor + self.layer_scale.unsqueeze(-1) * (
self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight
)
b = torch.squeeze(self.layer_scale) * (
self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
)
else:
w = (
self.mixer.id_tensor
+ self.mixer.reparam_conv.weight
- self.norm.reparam_conv.weight
)
b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
self.reparam_conv = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim,
kernel_size=self.kernel_size,
stride=1,
padding=self.kernel_size // 2,
groups=self.dim,
bias=True,
)
self.reparam_conv.weight.data = w
self.reparam_conv.bias.data = b
for para in self.parameters():
para.detach_()
self.__delattr__("mixer")
self.__delattr__("norm")
if self.use_layer_scale:
self.__delattr__("layer_scale")
class ConvFFN(nn.Module):
"""Convolutional FFN Module."""
def __init__(
self,
in_channels: int,
hidden_channels: Optional[int] = None,
out_channels: Optional[int] = None,
act_layer: nn.Module = nn.GELU,
drop: float = 0.0,
) -> None:
"""Build convolutional FFN module.
Args:
in_channels: Number of input channels.
hidden_channels: Number of channels after expansion. Default: None
out_channels: Number of output channels. Default: None
act_layer: Activation layer. Default: ``GELU``
drop: Dropout rate. Default: ``0.0``.
"""
super().__init__()
out_channels = out_channels or in_channels
hidden_channels = hidden_channels or in_channels
self.conv = nn.Sequential()
self.conv.add_module(
"conv",
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=7,
padding=3,
groups=in_channels,
bias=False,
),
)
self.conv.add_module("bn", nn.BatchNorm2d(num_features=out_channels))
self.fc1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=1)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module) -> None:
if isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class RepCPE(nn.Module):
"""Implementation of conditional positional encoding.
For more details refer to paper:
`Conditional Positional Encodings for Vision Transformers <https://arxiv.org/pdf/2102.10882.pdf>`_
In our implementation, we can reparameterize this module to eliminate a skip connection.
"""
def __init__(
self,
in_channels: int,
embed_dim: int = 768,
spatial_shape: Union[int, Tuple[int, int]] = (7, 7),
inference_mode=False,
) -> None:
"""Build reparameterizable conditional positional encoding
Args:
in_channels: Number of input channels.
embed_dim: Number of embedding dimensions. Default: 768
spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7)
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
"""
super(RepCPE, self).__init__()
if isinstance(spatial_shape, int):
spatial_shape = tuple([spatial_shape] * 2)
assert isinstance(spatial_shape, Tuple), (
f'"spatial_shape" must by a sequence or int, '
f"get {type(spatial_shape)} instead."
)
assert len(spatial_shape) == 2, (
f'Length of "spatial_shape" should be 2, '
f"got {len(spatial_shape)} instead."
)
self.spatial_shape = spatial_shape
self.embed_dim = embed_dim
self.in_channels = in_channels
self.groups = embed_dim
if inference_mode:
self.reparam_conv = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.embed_dim,
kernel_size=self.spatial_shape,
stride=1,
padding=int(self.spatial_shape[0] // 2),
groups=self.embed_dim,
bias=True,
)
else:
self.pe = nn.Conv2d(
in_channels,
embed_dim,
spatial_shape,
1,
int(spatial_shape[0] // 2),
bias=True,
groups=embed_dim,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if hasattr(self, "reparam_conv"):
x = self.reparam_conv(x)
return x
else:
x = self.pe(x) + x
return x
def reparameterize(self) -> None:
# Build equivalent Id tensor
input_dim = self.in_channels // self.groups
kernel_value = torch.zeros(
(
self.in_channels,
input_dim,
self.spatial_shape[0],
self.spatial_shape[1],
),
dtype=self.pe.weight.dtype,
device=self.pe.weight.device,
)
for i in range(self.in_channels):
kernel_value[
i,
i % input_dim,
self.spatial_shape[0] // 2,
self.spatial_shape[1] // 2,
] = 1
id_tensor = kernel_value
# Reparameterize Id tensor and conv
w_final = id_tensor + self.pe.weight
b_final = self.pe.bias
# Introduce reparam conv
self.reparam_conv = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.embed_dim,
kernel_size=self.spatial_shape,
stride=1,
padding=int(self.spatial_shape[0] // 2),
groups=self.embed_dim,
bias=True,
)
self.reparam_conv.weight.data = w_final
self.reparam_conv.bias.data = b_final
for para in self.parameters():
para.detach_()
self.__delattr__("pe")
class RepMixerBlock(nn.Module):
"""Implementation of Metaformer block with RepMixer as token mixer.
For more details on Metaformer structure, please refer to:
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
"""
def __init__(
self,
dim: int,
kernel_size: int = 3,
mlp_ratio: float = 4.0,
act_layer: nn.Module = nn.GELU,
drop: float = 0.0,
drop_path: float = 0.0,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
inference_mode: bool = False,
):
"""Build RepMixer Block.
Args:
dim: Number of embedding dimensions.
kernel_size: Kernel size for repmixer. Default: 3
mlp_ratio: MLP expansion ratio. Default: 4.0
act_layer: Activation layer. Default: ``nn.GELU``
drop: Dropout rate. Default: 0.0
drop_path: Drop path rate. Default: 0.0
use_layer_scale: Flag to turn on layer scale. Default: ``True``
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
"""
super().__init__()
self.token_mixer = RepMixer(
dim,
kernel_size=kernel_size,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
inference_mode=inference_mode,
)
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
mlp_ratio
)
mlp_hidden_dim = int(dim * mlp_ratio)
self.convffn = ConvFFN(
in_channels=dim,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# Drop Path
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
# Layer Scale
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
def forward(self, x):
if self.use_layer_scale:
x = self.token_mixer(x)
x = x + self.drop_path(self.layer_scale * self.convffn(x))
else:
x = self.token_mixer(x)
x = x + self.drop_path(self.convffn(x))
return x
class AttentionBlock(nn.Module):
"""Implementation of metaformer block with MHSA as token mixer.
For more details on Metaformer structure, please refer to:
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
"""
def __init__(
self,
dim: int,
mlp_ratio: float = 4.0,
act_layer: nn.Module = nn.GELU,
norm_layer: nn.Module = nn.BatchNorm2d,
drop: float = 0.0,
drop_path: float = 0.0,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
):
"""Build Attention Block.
Args:
dim: Number of embedding dimensions.
mlp_ratio: MLP expansion ratio. Default: 4.0
act_layer: Activation layer. Default: ``nn.GELU``
norm_layer: Normalization layer. Default: ``nn.BatchNorm2d``
drop: Dropout rate. Default: 0.0
drop_path: Drop path rate. Default: 0.0
use_layer_scale: Flag to turn on layer scale. Default: ``True``
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
"""
super().__init__()
self.norm = norm_layer(dim)
self.token_mixer = MHSA(dim=dim)
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
mlp_ratio
)
mlp_hidden_dim = int(dim * mlp_ratio)
self.convffn = ConvFFN(
in_channels=dim,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# Drop path
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
# Layer Scale
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(self.norm(x)))
x = x + self.drop_path(self.layer_scale_2 * self.convffn(x))
else:
x = x + self.drop_path(self.token_mixer(self.norm(x)))
x = x + self.drop_path(self.convffn(x))
return x
def basic_blocks(
dim: int,
block_index: int,
num_blocks: List[int],
token_mixer_type: str = "repmixer",
kernel_size: int = 3,
mlp_ratio: float = 4.0,
act_layer: nn.Module = nn.GELU,
norm_layer: nn.Module = nn.BatchNorm2d,
drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
inference_mode=False,
) -> nn.Sequential:
"""Build FastViT blocks within a stage.
Args:
dim: Number of embedding dimensions.
block_index: block index.
num_blocks: List containing number of blocks per stage.
token_mixer_type: Token mixer type.
kernel_size: Kernel size for repmixer.
mlp_ratio: MLP expansion ratio.
act_layer: Activation layer.
norm_layer: Normalization layer.
drop_rate: Dropout rate.
drop_path_rate: Drop path rate.
use_layer_scale: Flag to turn on layer scale regularization.
layer_scale_init_value: Layer scale value at initialization.
inference_mode: Flag to instantiate block in inference mode.
Returns:
nn.Sequential object of all the blocks within the stage.
"""
blocks = []
for block_idx in range(num_blocks[block_index]):
block_dpr = (
drop_path_rate
* (block_idx + sum(num_blocks[:block_index]))
/ (sum(num_blocks) - 1)
)
if token_mixer_type == "repmixer":
blocks.append(
RepMixerBlock(
dim,
kernel_size=kernel_size,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
inference_mode=inference_mode,
)
)
elif token_mixer_type == "attention":
blocks.append(
AttentionBlock(
dim,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
norm_layer=norm_layer,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
)
)
else:
raise ValueError(
"Token mixer type: {} not supported".format(token_mixer_type)
)
blocks = nn.Sequential(*blocks)
return blocks
class ResizeLayer(nn.Module):
def __init__(self, size):
super(ResizeLayer, self).__init__()
self.size = size
def forward(self, x):
return torch.nn.functional.interpolate(x, size=self.size, mode='nearest')
class MakeImage(nn.Module):
def forward(self, x):
return x.view(x.size(0),-1,64,64)
###############################################################################################
###############################################################################################
###############################################################################################
###############################################################################################
class PoseFastViT(nn.Module):
def __init__(self,
cfg,
inference_mode = False,
**kwargs):
self.inplanes = 64
extra = cfg['MODEL']['EXTRA']
super(PoseFastViT, self).__init__()
#### FastViT Stem net
#### cfg fastvit_t8
# layers = [2,2,4,2]
# embed_dims = [48,96,192,384]
# mlp_ratios = [3,3,3,3]
# downsamples = [True, True, True, True]
# token_mixers = ("repmixer", "repmixer", "repmixer", "repmixer")
# pos_embs = None
# repmixer_kernel_size=3
# norm_layer: nn.Module = nn.BatchNorm2d
# act_layer: nn.Module = nn.GELU
# drop_rate=0.0
# drop_path_rate=0.0
# use_layer_scale=True
# layer_scale_init_value=1e-5
# down_patch_size=7
# down_stride=2
####
# # ### cfg fastvit_sa24
# act_layer: nn.Module = nn.ReLU
# norm_layer: nn.Module = nn.BatchNorm2d
# layers = [4,4,12,4]
# embed_dims = [64,128,256,512]
# mlp_ratios = [4,4,4,4]
# downsamples = [True, True, True, True]
# pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7,7))]
# token_mixers = ("repmixer", "repmixer", "repmixer","attention")
# repmixer_kernel_size =3
# drop_rate=0.1
# drop_path_rate=0.1
# use_layer_scale=True
# layer_scale_init_value=1e-5
# down_patch_size=7
# down_stride=2
#### cfg fastvit_sa36
# act_layer: nn.Module = nn.ReLU
# norm_layer: nn.Module = nn.BatchNorm2d
# layers = [6,6,18,6]
# embed_dims = [64,128,256,512]
# mlp_ratios = [4,4,4,4]
# downsamples = [True, True, True, True]
# pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7,7))]
# token_mixers = ("repmixer", "repmixer", "repmixer","attention")
# repmixer_kernel_size = 3
# drop_rate=0.1
# drop_path_rate=0.1
# use_layer_scale=True
# layer_scale_init_value=1e-5
# down_patch_size=7
# down_stride=2
#### cfg fastvit_MA36
act_layer: nn.Module = nn.ReLU
norm_layer: nn.Module = nn.BatchNorm2d
layers = [6,6,18,6]
embed_dims = [76,152,304,608]
mlp_ratios = [4,4,4,4]
downsamples = [True, True, True, True]
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7,7))]
token_mixers = ("repmixer", "repmixer", "repmixer","attention")
repmixer_kernel_size =3
drop_rate=0.0
drop_path_rate=0.0
use_layer_scale=True
layer_scale_init_value=1e-6
down_patch_size=7
down_stride=2
####
####
if pos_embs is None:
pos_embs = [None] * len(layers)
self.patch_embed = convolutional_stem(3, embed_dims[0], inference_mode)
network = []
for i in range(len(layers)):
# Add position embeddings if requested
if pos_embs[i] is not None:
network.append(
pos_embs[i](
embed_dims[i], embed_dims[i], inference_mode=inference_mode
)
)
stage = basic_blocks(
embed_dims[i],
i,
layers,
token_mixer_type=token_mixers[i],
kernel_size=repmixer_kernel_size,
mlp_ratio=mlp_ratios[i],
act_layer=act_layer,
norm_layer=norm_layer,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
inference_mode=inference_mode,
)
network.append(stage)
if i >= len(layers) - 1:
break
# Patch merging/downsampling between stages.
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
network.append(
PatchEmbed(
patch_size=down_patch_size,
stride=down_stride,
in_channels=embed_dims[i],
embed_dim=embed_dims[i + 1],
inference_mode=inference_mode,
)
)
self.network = nn.ModuleList(network)
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
if i_emb == 0 and os.environ.get("FORK_LAST3", None):
"""For RetinaNet, `start_level=1`. The first norm layer will not used.
cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
"""
layer = nn.Identity()
else:
layer = norm_layer(embed_dims[i_emb])
layer_name = f"norm{i_layer}"
self.add_module(layer_name, layer)
####
# stem net
self.layer_ch1 = nn.Sequential(
nn.BatchNorm2d(embed_dims[1]),
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(
in_channels= int(embed_dims[1]),
out_channels= int(embed_dims[0]),
kernel_size=3,
stride=1,
padding=1
)
)
self.layer_ch2 = nn.Sequential(
nn.BatchNorm2d(embed_dims[2]),
nn.Upsample(scale_factor=2,mode='nearest'),
nn.Upsample(scale_factor=2,mode='nearest'),
nn.Conv2d(
in_channels= int(embed_dims[2]),
out_channels= int(embed_dims[1]),
kernel_size=1,
stride=1,
padding=0
),
nn.Conv2d(
in_channels= int(embed_dims[1]),
out_channels= int(embed_dims[0]),
kernel_size=1,
stride=1,
padding=0
)
)
self.layer_ch3 = nn.Sequential(
nn.BatchNorm2d(embed_dims[3]),
nn.Upsample(scale_factor=8,mode='nearest'),
nn.Conv2d(
in_channels= int(embed_dims[3]),
out_channels= int(embed_dims[2]),
kernel_size=1,
stride=1,
padding=0
),
nn.Conv2d(
in_channels= int(embed_dims[2]),
out_channels= int(embed_dims[1]),
kernel_size=1,
stride=1,
padding=0
),
nn.Conv2d(
in_channels= int(embed_dims[1]),
out_channels= int(embed_dims[0]),
kernel_size=1,
stride=1,
padding=0
)
)
# local1, local2, pool2d 모두 유지
self.local1 = nn.Conv2d(
in_channels= int(embed_dims[0]),
out_channels= int(embed_dims[0]),
kernel_size=3,
stride=1,
padding=1
)
self.local2 = nn.Conv2d(
in_channels=int(embed_dims[0]),
out_channels=int(embed_dims[0]),
kernel_size=1,
padding=0
)
self.pool2d = nn.MaxPool2d(
kernel_size=3,
stride=1,
padding=1,
dilation=1
)
self.layer_ = nn.Conv2d(
in_channels= embed_dims[0],
out_channels= 32,
kernel_size=1,
stride=1,
padding=0
)
## Need to check final layer input channel
self.final_layer = nn.Conv2d(
in_channels=32,
# in_channels=76,
out_channels=cfg['MODEL']['NUM_JOINTS'],
kernel_size=extra['FINAL_CONV_KERNEL'],
stride=1,
padding=1 if extra['FINAL_CONV_KERNEL'] == 3 else 0
)