-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathstruct_ops.py
65 lines (53 loc) · 2.18 KB
/
struct_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import typing
import pandas as pd
import pyarrow as pa
from bigframes import dtypes
from bigframes.operations import base_ops
@dataclasses.dataclass(frozen=True)
class StructFieldOp(base_ops.UnaryOp):
name: typing.ClassVar[str] = "struct_field"
name_or_index: typing.Union[str, int]
def output_type(self, *input_types):
input_type = input_types[0]
if not isinstance(input_type, pd.ArrowDtype):
raise TypeError("field accessor input must be a struct type")
pa_type = input_type.pyarrow_dtype
if not isinstance(pa_type, pa.StructType):
raise TypeError("field accessor input must be a struct type")
pa_result_type = pa_type[self.name_or_index].type
return dtypes.arrow_dtype_to_bigframes_dtype(pa_result_type)
@dataclasses.dataclass(frozen=True)
class StructOp(base_ops.NaryOp):
name: typing.ClassVar[str] = "struct"
column_names: tuple[str]
def output_type(self, *input_types: dtypes.ExpressionType) -> dtypes.ExpressionType:
num_input_types = len(input_types)
# value1, value2, ...
assert num_input_types == len(self.column_names)
fields = []
for i in range(num_input_types):
arrow_type = dtypes.bigframes_dtype_to_arrow_dtype(input_types[i])
fields.append(
pa.field(
self.column_names[i],
arrow_type,
nullable=(not pa.types.is_list(arrow_type)),
)
)
return pd.ArrowDtype(
pa.struct(fields)
) # [(name1, value1), (name2, value2), ...]