-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathdtypes.py
646 lines (556 loc) · 23.1 KB
/
dtypes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mappings for Pandas dtypes supported by BigQuery DataFrames package"""
import datetime
import decimal
import textwrap
import typing
from typing import Any, Dict, Iterable, Literal, Tuple, Union
import geopandas as gpd # type: ignore
import google.cloud.bigquery as bigquery
import ibis
import ibis.expr.datatypes as ibis_dtypes
from ibis.expr.datatypes.core import dtype as python_type_to_bigquery_type
import ibis.expr.types as ibis_types
import numpy as np
import pandas as pd
import pyarrow as pa
import bigframes.constants as constants
import third_party.bigframes_vendored.google_cloud_bigquery._pandas_helpers as gcb3p_pandas_helpers
import third_party.bigframes_vendored.ibis.backends.bigquery.datatypes as third_party_ibis_bqtypes
import third_party.bigframes_vendored.ibis.expr.operations as vendored_ibis_ops
# Type hints for Pandas dtypes supported by BigQuery DataFrame
Dtype = Union[
pd.BooleanDtype,
pd.Float64Dtype,
pd.Int64Dtype,
pd.StringDtype,
pd.ArrowDtype,
gpd.array.GeometryDtype,
]
# Represents both column types (dtypes) and local-only types
# None represents the type of a None scalar.
ExpressionType = typing.Optional[Dtype]
INT_DTYPE = pd.Int64Dtype()
FLOAT_DTYPE = pd.Float64Dtype()
BOOL_DTYPE = pd.BooleanDtype()
STRING_DTYPE = pd.StringDtype(storage="pyarrow")
# On BQ side, ARRAY, STRUCT, GEOGRAPHY, JSON are not orderable
UNORDERED_DTYPES = [gpd.array.GeometryDtype()]
# Type hints for dtype strings supported by BigQuery DataFrame
DtypeString = Literal[
"boolean",
"Float64",
"Int64",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
"decimal128(38, 9)[pyarrow]",
"decimal256(38, 9)[pyarrow]",
"binary[pyarrow]",
]
# Type hints for Ibis data types supported by BigQuery DataFrame
IbisDtype = Union[
ibis_dtypes.Boolean,
ibis_dtypes.Float64,
ibis_dtypes.Int64,
ibis_dtypes.String,
ibis_dtypes.Date,
ibis_dtypes.Time,
ibis_dtypes.Timestamp,
]
BOOL_BIGFRAMES_TYPES = [pd.BooleanDtype()]
# Corresponds to the pandas concept of numeric type (such as when 'numeric_only' is specified in an operation)
# Pandas is inconsistent, so two definitions are provided, each used in different contexts
NUMERIC_BIGFRAMES_TYPES_RESTRICTIVE = [
pd.Float64Dtype(),
pd.Int64Dtype(),
]
NUMERIC_BIGFRAMES_TYPES_PERMISSIVE = NUMERIC_BIGFRAMES_TYPES_RESTRICTIVE + [
pd.BooleanDtype(),
pd.ArrowDtype(pa.decimal128(38, 9)),
pd.ArrowDtype(pa.decimal256(76, 38)),
]
# Type hints for Ibis data types that can be read to Python objects by BigQuery DataFrame
ReadOnlyIbisDtype = Union[
ibis_dtypes.Binary,
ibis_dtypes.JSON,
ibis_dtypes.Decimal,
ibis_dtypes.GeoSpatial,
ibis_dtypes.Array,
ibis_dtypes.Struct,
]
BIDIRECTIONAL_MAPPINGS: Iterable[Tuple[IbisDtype, Dtype]] = (
(ibis_dtypes.boolean, pd.BooleanDtype()),
(ibis_dtypes.date, pd.ArrowDtype(pa.date32())),
(ibis_dtypes.float64, pd.Float64Dtype()),
(ibis_dtypes.int64, pd.Int64Dtype()),
(ibis_dtypes.string, pd.StringDtype(storage="pyarrow")),
(ibis_dtypes.time, pd.ArrowDtype(pa.time64("us"))),
(ibis_dtypes.Timestamp(timezone=None), pd.ArrowDtype(pa.timestamp("us"))),
(
ibis_dtypes.Timestamp(timezone="UTC"),
pd.ArrowDtype(pa.timestamp("us", tz="UTC")),
),
(ibis_dtypes.binary, pd.ArrowDtype(pa.binary())),
(
ibis_dtypes.Decimal(precision=38, scale=9, nullable=True),
pd.ArrowDtype(pa.decimal128(38, 9)),
),
(
ibis_dtypes.Decimal(precision=76, scale=38, nullable=True),
pd.ArrowDtype(pa.decimal256(76, 38)),
),
)
BIGFRAMES_TO_IBIS: Dict[Dtype, ibis_dtypes.DataType] = {
pandas: ibis for ibis, pandas in BIDIRECTIONAL_MAPPINGS
}
IBIS_TO_ARROW: Dict[ibis_dtypes.DataType, pa.DataType] = {
ibis_dtypes.boolean: pa.bool_(),
ibis_dtypes.date: pa.date32(),
ibis_dtypes.float64: pa.float64(),
ibis_dtypes.int64: pa.int64(),
ibis_dtypes.string: pa.string(),
ibis_dtypes.time: pa.time64("us"),
ibis_dtypes.Timestamp(timezone=None): pa.timestamp("us"),
ibis_dtypes.Timestamp(timezone="UTC"): pa.timestamp("us", tz="UTC"),
ibis_dtypes.binary: pa.binary(),
ibis_dtypes.Decimal(precision=38, scale=9, nullable=True): pa.decimal128(38, 9),
ibis_dtypes.Decimal(precision=76, scale=38, nullable=True): pa.decimal256(76, 38),
}
ARROW_TO_IBIS = {arrow: ibis for ibis, arrow in IBIS_TO_ARROW.items()}
IBIS_TO_BIGFRAMES: Dict[ibis_dtypes.DataType, Dtype] = {
ibis: pandas for ibis, pandas in BIDIRECTIONAL_MAPPINGS
}
# Allow REQUIRED fields to map correctly.
IBIS_TO_BIGFRAMES.update(
{ibis.copy(nullable=False): pandas for ibis, pandas in BIDIRECTIONAL_MAPPINGS}
)
IBIS_TO_BIGFRAMES.update(
{
ibis_dtypes.GeoSpatial(
geotype="geography", srid=4326, nullable=True
): gpd.array.GeometryDtype(),
# TODO: Interval
}
)
BIGFRAMES_STRING_TO_BIGFRAMES: Dict[DtypeString, Dtype] = {
typing.cast(DtypeString, dtype.name): dtype for dtype in BIGFRAMES_TO_IBIS.keys()
}
# special case - string[pyarrow] doesn't include the storage in its name, and both
# "string" and "string[pyarrow] are accepted"
BIGFRAMES_STRING_TO_BIGFRAMES["string[pyarrow]"] = pd.StringDtype(storage="pyarrow")
# For the purposes of dataframe.memory_usage
# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data_type_sizes
DTYPE_BYTE_SIZES = {
pd.BooleanDtype(): 1,
pd.Int64Dtype(): 8,
pd.Float32Dtype(): 8,
pd.StringDtype(): 8,
pd.ArrowDtype(pa.time64("us")): 8,
pd.ArrowDtype(pa.timestamp("us")): 8,
pd.ArrowDtype(pa.timestamp("us", tz="UTC")): 8,
pd.ArrowDtype(pa.date32()): 8,
}
def ibis_dtype_to_bigframes_dtype(
ibis_dtype: ibis_dtypes.DataType,
) -> Dtype:
"""Converts an Ibis dtype to a BigQuery DataFrames dtype
Args:
ibis_dtype: The ibis dtype used to represent this type, which
should in turn correspond to an underlying BigQuery type
Returns:
The supported BigQuery DataFrames dtype, which may be provided by
pandas, numpy, or db_types
Raises:
ValueError: if passed an unexpected type
"""
# Special cases: Ibis supports variations on these types, but currently
# our IO returns them as objects. Eventually, we should support them as
# ArrowDType (and update the IO accordingly)
if isinstance(ibis_dtype, ibis_dtypes.Array):
return pd.ArrowDtype(ibis_dtype_to_arrow_dtype(ibis_dtype))
if isinstance(ibis_dtype, ibis_dtypes.Struct):
return pd.ArrowDtype(ibis_dtype_to_arrow_dtype(ibis_dtype))
# BigQuery only supports integers of size 64 bits.
if isinstance(ibis_dtype, ibis_dtypes.Integer):
return pd.Int64Dtype()
if ibis_dtype in IBIS_TO_BIGFRAMES:
return IBIS_TO_BIGFRAMES[ibis_dtype]
elif isinstance(ibis_dtype, ibis_dtypes.Null):
# Fallback to STRING for NULL values for most flexibility in SQL.
return IBIS_TO_BIGFRAMES[ibis_dtypes.string]
else:
raise ValueError(
f"Unexpected Ibis data type {ibis_dtype}. {constants.FEEDBACK_LINK}"
)
def ibis_dtype_to_arrow_dtype(ibis_dtype: ibis_dtypes.DataType) -> pa.DataType:
if isinstance(ibis_dtype, ibis_dtypes.Array):
return pa.list_(
ibis_dtype_to_arrow_dtype(ibis_dtype.value_type.copy(nullable=True))
)
if isinstance(ibis_dtype, ibis_dtypes.Struct):
return pa.struct(
[
(name, ibis_dtype_to_arrow_dtype(dtype))
for name, dtype in ibis_dtype.fields.items()
]
)
if ibis_dtype in IBIS_TO_ARROW:
return IBIS_TO_ARROW[ibis_dtype]
else:
raise ValueError(
f"Unexpected Ibis data type {ibis_dtype}. {constants.FEEDBACK_LINK}"
)
def ibis_value_to_canonical_type(value: ibis_types.Value) -> ibis_types.Value:
"""Converts an Ibis expression to canonical type.
This is useful in cases where multiple types correspond to the same BigFrames dtype.
"""
ibis_type = value.type()
name = value.get_name()
if ibis_type.is_json():
value = vendored_ibis_ops.ToJsonString(value).to_expr()
return value.name(name)
# Allow REQUIRED fields to be joined with NULLABLE fields.
nullable_type = ibis_type.copy(nullable=True)
return value.cast(nullable_type).name(name)
def arrow_dtype_to_ibis_dtype(arrow_dtype: pa.DataType) -> ibis_dtypes.DataType:
if pa.types.is_struct(arrow_dtype):
struct_dtype = typing.cast(pa.StructType, arrow_dtype)
return ibis_dtypes.Struct.from_tuples(
[
(field.name, arrow_dtype_to_ibis_dtype(field.type))
for field in struct_dtype
]
)
if arrow_dtype in ARROW_TO_IBIS:
return ARROW_TO_IBIS[arrow_dtype]
else:
raise ValueError(
f"Unexpected Arrow data type {arrow_dtype}. {constants.FEEDBACK_LINK}"
)
def bigframes_dtype_to_ibis_dtype(
bigframes_dtype: Union[DtypeString, Dtype, np.dtype[Any]]
) -> ibis_dtypes.DataType:
"""Converts a BigQuery DataFrames supported dtype to an Ibis dtype.
Args:
bigframes_dtype:
A dtype supported by BigQuery DataFrame
Returns:
IbisDtype: The corresponding Ibis type
Raises:
ValueError: If passed a dtype not supported by BigQuery DataFrames.
"""
if isinstance(bigframes_dtype, pd.ArrowDtype):
return arrow_dtype_to_ibis_dtype(bigframes_dtype.pyarrow_dtype)
type_string = str(bigframes_dtype)
if type_string in BIGFRAMES_STRING_TO_BIGFRAMES:
bigframes_dtype = BIGFRAMES_STRING_TO_BIGFRAMES[
typing.cast(DtypeString, type_string)
]
else:
raise ValueError(
textwrap.dedent(
f"""
Unexpected data type {bigframes_dtype}. The following
str dtypes are supppted: 'boolean','Float64','Int64', 'string',
'string[pyarrow]','timestamp[us, tz=UTC][pyarrow]',
'timestamp[us][pyarrow]','date32[day][pyarrow]',
'time64[us][pyarrow]'. The following pandas.ExtensionDtype are
supported: pandas.BooleanDtype(), pandas.Float64Dtype(),
pandas.Int64Dtype(), pandas.StringDtype(storage="pyarrow"),
pd.ArrowDtype(pa.date32()), pd.ArrowDtype(pa.time64("us")),
pd.ArrowDtype(pa.timestamp("us")),
pd.ArrowDtype(pa.timestamp("us", tz="UTC")).
{constants.FEEDBACK_LINK}
"""
)
)
return BIGFRAMES_TO_IBIS[bigframes_dtype]
def literal_to_ibis_scalar(
literal, force_dtype: typing.Optional[Dtype] = None, validate: bool = True
):
"""Accept any literal and, if possible, return an Ibis Scalar
expression with a BigQuery DataFrames compatible data type
Args:
literal:
any value accepted by Ibis
force_dtype:
force the value to a specific dtype
validate:
If true, will raise ValueError if type cannot be stored in a
BigQuery DataFrames object. If used as a subexpression, this should
be disabled.
Returns:
An ibis Scalar supported by BigQuery DataFrame
Raises:
ValueError: if passed literal cannot be coerced to a
BigQuery DataFrames compatible scalar
"""
# Special case: Can create nulls for non-bidirectional types
if (force_dtype == gpd.array.GeometryDtype()) and pd.isna(literal):
# Ibis has bug for casting nulltype to geospatial, so we perform intermediate cast first
geotype = ibis_dtypes.GeoSpatial(geotype="geography", srid=4326, nullable=True)
return ibis.literal(None, geotype)
ibis_dtype = BIGFRAMES_TO_IBIS[force_dtype] if force_dtype else None
if pd.api.types.is_list_like(literal):
if validate:
raise ValueError(
f"List types can't be stored in BigQuery DataFrames. {constants.FEEDBACK_LINK}"
)
# "correct" way would be to use ibis.array, but this produces invalid BQ SQL syntax
return tuple(literal)
if not pd.api.types.is_list_like(literal) and pd.isna(literal):
if ibis_dtype:
return ibis.null().cast(ibis_dtype)
else:
return ibis.null()
scalar_expr = ibis.literal(literal)
if ibis_dtype:
scalar_expr = ibis.literal(literal, ibis_dtype)
elif scalar_expr.type().is_floating():
scalar_expr = ibis.literal(literal, ibis_dtypes.float64)
elif scalar_expr.type().is_integer():
scalar_expr = ibis.literal(literal, ibis_dtypes.int64)
elif scalar_expr.type().is_decimal():
precision = scalar_expr.type().precision
scale = scalar_expr.type().scale
if (not precision and not scale) or (
precision and scale and scale <= 9 and precision + (9 - scale) <= 38
):
scalar_expr = ibis.literal(
literal, ibis_dtypes.decimal(precision=38, scale=9)
)
elif precision and scale and scale <= 38 and precision + (38 - scale) <= 76:
scalar_expr = ibis.literal(
literal, ibis_dtypes.decimal(precision=76, scale=38)
)
else:
raise TypeError(
"BigQuery's decimal data type supports a maximum precision of 76 and a maximum scale of 38."
f"Current precision: {precision}. Current scale: {scale}"
)
# TODO(bmil): support other literals that can be coerced to compatible types
if validate and (scalar_expr.type() not in BIGFRAMES_TO_IBIS.values()):
raise ValueError(
f"Literal did not coerce to a supported data type: {scalar_expr.type()}. {constants.FEEDBACK_LINK}"
)
return scalar_expr
def cast_ibis_value(
value: ibis_types.Value, to_type: ibis_dtypes.DataType
) -> ibis_types.Value:
"""Perform compatible type casts of ibis values
Args:
value:
Ibis value, which could be a literal, scalar, or column
to_type:
The Ibis type to cast to
Returns:
A new Ibis value of type to_type
Raises:
TypeError: if the type cast cannot be executed"""
if value.type() == to_type:
return value
# casts that just work
# TODO(bmil): add to this as more casts are verified
good_casts = {
ibis_dtypes.bool: (ibis_dtypes.int64,),
ibis_dtypes.int64: (
ibis_dtypes.bool,
ibis_dtypes.float64,
ibis_dtypes.string,
ibis_dtypes.Decimal(precision=38, scale=9),
ibis_dtypes.Decimal(precision=76, scale=38),
),
ibis_dtypes.float64: (
ibis_dtypes.string,
ibis_dtypes.int64,
ibis_dtypes.Decimal(precision=38, scale=9),
ibis_dtypes.Decimal(precision=76, scale=38),
),
ibis_dtypes.string: (
ibis_dtypes.int64,
ibis_dtypes.float64,
ibis_dtypes.Decimal(precision=38, scale=9),
ibis_dtypes.Decimal(precision=76, scale=38),
ibis_dtypes.binary,
),
ibis_dtypes.date: (ibis_dtypes.string,),
ibis_dtypes.Decimal(precision=38, scale=9): (
ibis_dtypes.float64,
ibis_dtypes.Decimal(precision=76, scale=38),
),
ibis_dtypes.Decimal(precision=76, scale=38): (
ibis_dtypes.float64,
ibis_dtypes.Decimal(precision=38, scale=9),
),
ibis_dtypes.time: (),
ibis_dtypes.timestamp: (ibis_dtypes.Timestamp(timezone="UTC"),),
ibis_dtypes.Timestamp(timezone="UTC"): (ibis_dtypes.timestamp,),
ibis_dtypes.binary: (ibis_dtypes.string,),
}
value = ibis_value_to_canonical_type(value)
if value.type() in good_casts:
if to_type in good_casts[value.type()]:
return value.cast(to_type)
else:
# this should never happen
raise TypeError(
f"Unexpected value type {value.type()}. {constants.FEEDBACK_LINK}"
)
# casts that need some encouragement
# BigQuery casts bools to lower case strings. Capitalize the result to match Pandas
# TODO(bmil): remove this workaround after fixing Ibis
if value.type() == ibis_dtypes.bool and to_type == ibis_dtypes.string:
return typing.cast(ibis_types.StringValue, value.cast(to_type)).capitalize()
if value.type() == ibis_dtypes.bool and to_type == ibis_dtypes.float64:
return value.cast(ibis_dtypes.int64).cast(ibis_dtypes.float64)
if value.type() == ibis_dtypes.float64 and to_type == ibis_dtypes.bool:
return value != ibis_types.literal(0)
raise TypeError(
f"Unsupported cast {value.type()} to {to_type}. {constants.FEEDBACK_LINK}"
)
def to_pandas_dtypes_overrides(schema: Iterable[bigquery.SchemaField]) -> Dict:
"""For each STRUCT field, make sure we specify the full type to use."""
# TODO(swast): Also override ARRAY fields.
dtypes = {}
for field in schema:
if field.field_type == "RECORD" and field.mode != "REPEATED":
# TODO(swast): We're using a private API here. Would likely be
# better if we called `to_arrow()` and converted to a pandas
# DataFrame ourselves from that.
dtypes[field.name] = pd.ArrowDtype(
gcb3p_pandas_helpers.bq_to_arrow_data_type(field)
)
return dtypes
def is_dtype(scalar: typing.Any, dtype: Dtype) -> bool:
"""Captures whether a scalar can be losslessly represented by a dtype."""
if scalar is None:
return True
if pd.api.types.is_bool_dtype(dtype):
return pd.api.types.is_bool(scalar)
if pd.api.types.is_float_dtype(dtype):
return pd.api.types.is_float(scalar)
if pd.api.types.is_integer_dtype(dtype):
return pd.api.types.is_integer(scalar)
if isinstance(dtype, pd.StringDtype):
return isinstance(scalar, str)
if isinstance(dtype, pd.ArrowDtype):
pa_type = dtype.pyarrow_dtype
return is_patype(scalar, pa_type)
return False
# string is binary
def is_patype(scalar: typing.Any, pa_type: pa.DataType) -> bool:
"""Determine whether a scalar's type matches a given pyarrow type."""
if pa_type == pa.time64("us"):
return isinstance(scalar, datetime.time)
elif pa_type == pa.timestamp("us"):
if isinstance(scalar, datetime.datetime):
return not scalar.tzinfo
if isinstance(scalar, pd.Timestamp):
return not scalar.tzinfo
elif pa_type == pa.timestamp("us", tz="UTC"):
if isinstance(scalar, datetime.datetime):
return scalar.tzinfo == datetime.timezone.utc
if isinstance(scalar, pd.Timestamp):
return scalar.tzinfo == datetime.timezone.utc
elif pa_type == pa.date32():
return isinstance(scalar, datetime.date)
elif pa_type == pa.binary():
return isinstance(scalar, bytes)
elif pa_type == pa.decimal128(38, 9):
# decimal.Decimal is a superset, but ibis performs out-of-bounds and loss-of-precision checks
return isinstance(scalar, decimal.Decimal)
elif pa_type == pa.decimal256(76, 38):
# decimal.Decimal is a superset, but ibis performs out-of-bounds and loss-of-precision checks
return isinstance(scalar, decimal.Decimal)
return False
def is_compatible(scalar: typing.Any, dtype: Dtype) -> typing.Optional[Dtype]:
"""Whether scalar can be compare to items of dtype (though maybe requiring coercion). Returns the datatype that must be used for the comparison"""
if is_dtype(scalar, dtype):
return dtype
elif pd.api.types.is_numeric_dtype(dtype):
# Implicit conversion currently only supported for numeric types
if pd.api.types.is_bool(scalar):
return lcd_type(pd.BooleanDtype(), dtype)
if pd.api.types.is_float(scalar):
return lcd_type(pd.Float64Dtype(), dtype)
if pd.api.types.is_integer(scalar):
return lcd_type(pd.Int64Dtype(), dtype)
if isinstance(scalar, decimal.Decimal):
# TODO: Check context to see if can use NUMERIC instead of BIGNUMERIC
return lcd_type(pd.ArrowDtype(pa.decimal256(76, 38)), dtype)
return None
def lcd_type(dtype1: Dtype, dtype2: Dtype) -> Dtype:
if dtype1 == dtype2:
return dtype1
# Implicit conversion currently only supported for numeric types
hierarchy: list[Dtype] = [
pd.BooleanDtype(),
pd.Int64Dtype(),
pd.ArrowDtype(pa.decimal128(38, 9)),
pd.ArrowDtype(pa.decimal256(76, 38)),
pd.Float64Dtype(),
]
if (dtype1 not in hierarchy) or (dtype2 not in hierarchy):
return None
lcd_index = max(hierarchy.index(dtype1), hierarchy.index(dtype2))
return hierarchy[lcd_index]
def lcd_etype(etype1: ExpressionType, etype2: ExpressionType) -> ExpressionType:
if etype1 is None:
return etype2
if etype2 is None:
return etype1
return lcd_type_or_throw(etype1, etype2)
def lcd_type_or_throw(dtype1: Dtype, dtype2: Dtype) -> Dtype:
result = lcd_type(dtype1, dtype2)
if result is None:
raise NotImplementedError(
f"BigFrames cannot upcast {dtype1} and {dtype2} to common type. {constants.FEEDBACK_LINK}"
)
return result
def infer_literal_type(literal) -> typing.Optional[Dtype]:
if pd.isna(literal):
return None # Null value without a definite type
# Temporary logic, use ibis inferred type
ibis_literal = literal_to_ibis_scalar(literal)
return ibis_dtype_to_bigframes_dtype(ibis_literal.type())
# Input and output types supported by BigQuery DataFrames remote functions.
# TODO(shobs): Extend the support to all types supported by BQ remote functions
# https://cloud.google.com/bigquery/docs/remote-functions#limitations
SUPPORTED_IO_PYTHON_TYPES = {bool, float, int, str}
SUPPORTED_IO_BIGQUERY_TYPEKINDS = {
"BOOLEAN",
"BOOL",
"FLOAT",
"FLOAT64",
"INT64",
"INTEGER",
"STRING",
}
class UnsupportedTypeError(ValueError):
def __init__(self, type_, supported_types):
self.type = type_
self.supported_types = supported_types
def ibis_type_from_python_type(t: type) -> ibis_dtypes.DataType:
if t not in SUPPORTED_IO_PYTHON_TYPES:
raise UnsupportedTypeError(t, SUPPORTED_IO_PYTHON_TYPES)
return python_type_to_bigquery_type(t)
def ibis_type_from_type_kind(tk: bigquery.StandardSqlTypeNames) -> ibis_dtypes.DataType:
if tk not in SUPPORTED_IO_BIGQUERY_TYPEKINDS:
raise UnsupportedTypeError(tk, SUPPORTED_IO_BIGQUERY_TYPEKINDS)
return third_party_ibis_bqtypes.BigQueryType.to_ibis(tk)