-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinet_timewait_sock.c
executable file
·865 lines (784 loc) · 25.6 KB
/
inet_timewait_sock.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Generic TIME_WAIT sockets functions
*
* From code orinally in TCP
*/
#include <linux/kernel.h>
#include <linux/kmemcheck.h>
#include <linux/slab.h>
#include <net/inet_hashtables.h>
#include <net/inet_timewait_sock.h>
#include <net/ip.h>
/**
* inet_twsk_unhash - unhash a timewait socket from established hash
* @tw: timewait socket
*
* unhash a timewait socket from established hash, if hashed.
* ehash lock must be held by caller.
* Returns 1 if caller should call inet_twsk_put() after lock release.
*/
int inet_twsk_unhash(struct inet_timewait_sock *tw)
{
if (hlist_nulls_unhashed(&tw->tw_node))
return 0;
hlist_nulls_del_rcu(&tw->tw_node);
sk_nulls_node_init(&tw->tw_node);
/*
* We cannot call inet_twsk_put() ourself under lock,
* caller must call it for us.
*/
return 1;
}
/**
* inet_twsk_bind_unhash - unhash a timewait socket from bind hash
* @tw: timewait socket
* @hashinfo: hashinfo pointer
*
* unhash a timewait socket from bind hash, if hashed.
* bind hash lock must be held by caller.
* Returns 1 if caller should call inet_twsk_put() after lock release.
*/
int inet_twsk_bind_unhash(struct inet_timewait_sock *tw,
struct inet_hashinfo *hashinfo)
{
struct inet_bind_bucket *tb = tw->tw_tb;
if (!tb)
return 0;
__hlist_del(&tw->tw_bind_node);
tw->tw_tb = NULL;
inet_bind_bucket_destroy(hashinfo->bind_bucket_cachep, tb);
/*
* We cannot call inet_twsk_put() ourself under lock,
* caller must call it for us.
*/
return 1;
}
/* Must be called with locally disabled BHs. */
static void __inet_twsk_kill(struct inet_timewait_sock *tw,
struct inet_hashinfo *hashinfo)
{
struct inet_bind_hashbucket *bhead;
int refcnt;
/* Unlink from established hashes. */
spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
spin_lock(lock);
refcnt = inet_twsk_unhash(tw);
spin_unlock(lock);
/* Disassociate with bind bucket. */
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num,
hashinfo->bhash_size)];
spin_lock(&bhead->lock);
refcnt += inet_twsk_bind_unhash(tw, hashinfo);
spin_unlock(&bhead->lock);
#ifdef SOCK_REFCNT_DEBUG
if (atomic_read(&tw->tw_refcnt) != 1) {
printk(KERN_DEBUG "%s timewait_sock %p refcnt=%d\n",
tw->tw_prot->name, tw, atomic_read(&tw->tw_refcnt));
}
#endif
while (refcnt) {
inet_twsk_put(tw);
refcnt--;
}
}
static noinline void inet_twsk_free(struct inet_timewait_sock *tw)
{
struct module *owner = tw->tw_prot->owner;
twsk_destructor((struct sock *)tw);
#ifdef SOCK_REFCNT_DEBUG
pr_debug("%s timewait_sock %p released\n", tw->tw_prot->name, tw);
#endif
release_net(twsk_net(tw));
kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw);
module_put(owner);
}
void inet_twsk_put(struct inet_timewait_sock *tw)
{
if (atomic_dec_and_test(&tw->tw_refcnt))
inet_twsk_free(tw);
}
EXPORT_SYMBOL_GPL(inet_twsk_put);
/*
* Enter the time wait state. This is called with locally disabled BH.
* Essentially we whip up a timewait bucket, copy the relevant info into it
* from the SK, and mess with hash chains and list linkage.
*//*
* 将timewait控制块添加到tcp_hashinfo的ebash散列表中,
* 将被替代的TCP控制块从ehash散列表中删除。这样
* FIN_WAIT2和TIME_WAIT状态下也可以进行输入的处理。
* 同时将该timewait控制块添加到bhash散列表中,但
* 并不删除该散列表中被替代的TCP控制块,因为
* 只要inet->num不为0,这个绑定关系就存在,
* 即使该套接字已经关闭
*/
void __inet_twsk_hashdance(struct inet_timewait_sock *tw, struct sock *sk,
struct inet_hashinfo *hashinfo)
{
const struct inet_sock *inet = inet_sk(sk);
const struct inet_connection_sock *icsk = inet_csk(sk);
struct inet_ehash_bucket *ehead = inet_ehash_bucket(hashinfo, sk->sk_hash);
spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash);
struct inet_bind_hashbucket *bhead;
/* Step 1: Put TW into bind hash. Original socket stays there too.
Note, that any socket with inet->num != 0 MUST be bound in
binding cache, even if it is closed.
*/
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->inet_num,
hashinfo->bhash_size)];
spin_lock(&bhead->lock);
tw->tw_tb = icsk->icsk_bind_hash;
WARN_ON(!icsk->icsk_bind_hash);
//将inet_timewait_sock添加到
inet_twsk_add_bind_node(tw, &tw->tw_tb->owners);//讲inet_bind_bucket桶指向tw->tw_bind_node,避免该函数外面在释放sk的时候,会释放掉bind桶信息
spin_unlock(&bhead->lock);
spin_lock(lock);
/*
* Step 2: Hash TW into TIMEWAIT chain.
* Should be done before removing sk from established chain
* because readers are lockless and search established first.
*/
inet_twsk_add_node_rcu(tw, &ehead->twchain);//把新创建的inet_timewait_sock加入到inet_hash中的ehash中
/* Step 3: Remove SK from established hash. */
if (__sk_nulls_del_node_init_rcu(sk))//把sk从inet_hash中的ehash表中删除
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
/*
* Notes :
* - We initially set tw_refcnt to 0 in inet_twsk_alloc()
* - We add one reference for the bhash link
* - We add one reference for the ehash link
* - We want this refcnt update done before allowing other
* threads to find this tw in ehash chain.
*/
atomic_add(1 + 1 + 1, &tw->tw_refcnt);
spin_unlock(lock);
}
EXPORT_SYMBOL_GPL(__inet_twsk_hashdance);
struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk, const int state)
{
struct inet_timewait_sock *tw =
kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab,
GFP_ATOMIC);
if (tw != NULL) {
const struct inet_sock *inet = inet_sk(sk);
kmemcheck_annotate_bitfield(tw, flags);
/* Give us an identity. */
tw->tw_daddr = inet->inet_daddr;
tw->tw_rcv_saddr = inet->inet_rcv_saddr;
tw->tw_bound_dev_if = sk->sk_bound_dev_if;
tw->tw_num = inet->inet_num;
tw->tw_state = TCP_TIME_WAIT;
tw->tw_substate = state;
tw->tw_sport = inet->inet_sport;
tw->tw_dport = inet->inet_dport;
tw->tw_family = sk->sk_family;
tw->tw_reuse = sk->sk_reuse;
tw->tw_hash = sk->sk_hash;
tw->tw_ipv6only = 0;
tw->tw_transparent = inet->transparent;
tw->tw_prot = sk->sk_prot_creator;
twsk_net_set(tw, hold_net(sock_net(sk)));
/*
* Because we use RCU lookups, we should not set tw_refcnt
* to a non null value before everything is setup for this
* timewait socket.
*/
atomic_set(&tw->tw_refcnt, 0);
inet_twsk_dead_node_init(tw);
__module_get(tw->tw_prot->owner);
}
return tw;
}
EXPORT_SYMBOL_GPL(inet_twsk_alloc);
/* Returns non-zero if quota exceeded. */
/*
* 删除cells散列表中当前关键字链表上的timewait控制块。
* 如果在inet_twdr_do_twkill_work()清理的timewait控制块数超过
* 100个,则说明还有一定量的timewait控制块需要处理。
* 而在定时器例程中处理,长时间不返回,会影响
* 系统性能,因此剩下的timewait控制块放在twkill_work
* 工作队列中处理。调度twkill_work工作队列前,先标识
* 待删除slot的位图,这样在twkill_work工作队列处理中,
* 根据thread_slots位图,处理cells散列表中相应的链表。
* inet_twdr_do_twkill_work()用来删除指定cells散列表中slot入口
* 链表中slot入口链表上的timewait控制块,然后将其释放,
* 最后更新系统中timewait控制块数。在删除过程中,
* 如果本次删除的个数达到100,则返回非零,表示
* 调用者需中断本次处理,重新调度。
*/
static int inet_twdr_do_twkill_work(struct inet_timewait_death_row *twdr,
const int slot)
{
struct inet_timewait_sock *tw;
struct hlist_node *node;
unsigned int killed;
int ret;
/* NOTE: compare this to previous version where lock
* was released after detaching chain. It was racy,
* because tw buckets are scheduled in not serialized context
* in 2.3 (with netfilter), and with softnet it is common, because
* soft irqs are not sequenced.
*/
killed = 0;
ret = 0;
rescan:
inet_twsk_for_each_inmate(tw, node, &twdr->cells[slot]) {
__inet_twsk_del_dead_node(tw);
spin_unlock(&twdr->death_lock);
__inet_twsk_kill(tw, twdr->hashinfo);
#ifdef CONFIG_NET_NS
NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_TIMEWAITED);
#endif
inet_twsk_put(tw);
killed++;
spin_lock(&twdr->death_lock);
if (killed > INET_TWDR_TWKILL_QUOTA) {
ret = 1;
break;
}
/* While we dropped twdr->death_lock, another cpu may have
* killed off the next TW bucket in the list, therefore
* do a fresh re-read of the hlist head node with the
* lock reacquired. We still use the hlist traversal
* macro in order to get the prefetches.
*/
goto rescan;
}
twdr->tw_count -= killed;
#ifndef CONFIG_NET_NS
NET_ADD_STATS_BH(&init_net, LINUX_MIB_TIMEWAITED, killed);
#endif
return ret;
}
/*
* tw_timer定时器的例程,该定时器超时后,会
* 遍历twcal_row散列表中当前关键字slot链表上的
* timewait控制块。
*/
void inet_twdr_hangman(unsigned long data)
{
struct inet_timewait_death_row *twdr;
int unsigned need_timer;
twdr = (struct inet_timewait_death_row *)data;
spin_lock(&twdr->death_lock);
/*
* 如果当前timewait控制块数为零,则无需
* 再做处理了。
*/
if (twdr->tw_count == 0)
goto out;
/*
* 删除cells散列表中当前关键字链表上的timewait控制块。
* 如果在inet_twdr_do_twkill_work()清理的timewait控制块数超过
* 100个,则说明还有一定量的timewait控制块需要处理。
* 而在定时器例程中处理,长时间不返回,会影响
* 系统性能,因此剩下的timewait控制块放在twkill_work
* 工作队列中处理。调度twkill_work工作队列前,先标识
* 待删除slot的位图,这样在twkill_work工作队列处理中,
* 根据thread_slots位图,处理cells散列表中相应的链表。
* inet_twdr_do_twkill_work()用来删除指定cells散列表中slot入口
* 链表中slot入口链表上的timewait控制块,然后将其释放,
* 最后更新系统中timewait控制块数。在删除过程中,
* 如果本次删除的个数达到100,则返回非零,表示
* 调用者需中断本次处理,重新调度。
*/
need_timer = 0;
if (inet_twdr_do_twkill_work(twdr, twdr->slot)) {//第一个tw_timer超时的时候,twdr->slot=0,低二个tw_timer超时的时候,该值变1,当到7后又回到1,也就保证了cells中的所有timewait被遍历到
twdr->thread_slots |= (1 << twdr->slot);
schedule_work(&twdr->twkill_work);
need_timer = 1;
} else {
/* We purged the entire slot, anything left? */
/*
* 如果还有timewait控制块,则还需设置定时器。
*/
if (twdr->tw_count)
need_timer = 1;
/*
* 本次超时处理完成后,需设置下次超时处理的
* cells散列表入口。
*/
twdr->slot = ((twdr->slot + 1) & (INET_TWDR_TWKILL_SLOTS - 1));
}
/*
* 如果还有timewait控制块需处理,则再次设置定时器。
*/
if (need_timer)
mod_timer(&twdr->tw_timer, jiffies + twdr->period);
out:
spin_unlock(&twdr->death_lock);
}
void inet_twdr_hangman1(unsigned long data)
{
struct inet_timewait_death_row *twdr;
int unsigned need_timer;
twdr = (struct inet_timewait_death_row *)data;
spin_lock(&twdr->death_lock);
if (twdr->tw_count == 0)
goto out;
need_timer = 0;
if (inet_twdr_do_twkill_work(twdr, twdr->slot)) {
twdr->thread_slots |= (1 << twdr->slot);
schedule_work(&twdr->twkill_work);
need_timer = 1;
} else {
/* We purged the entire slot, anything left? */
if (twdr->tw_count)
need_timer = 1;
twdr->slot = ((twdr->slot + 1) & (INET_TWDR_TWKILL_SLOTS - 1));
}
if (need_timer)
mod_timer(&twdr->tw_timer, jiffies + twdr->period);
out:
spin_unlock(&twdr->death_lock);
}
EXPORT_SYMBOL_GPL(inet_twdr_hangman);
/*
* twkill_work工作队列的例程,当tw_timer定时器例程中处理
* 的timewait控制块达到100个时,会调度twkill_work工作队列,
* 清理剩下的timewait控制块。
* 处理时会根据待删除slot的位图,删除对应slot链表上的
* timewait控制块,在twkill_work工作队列例程中每处理100个
* timewait控制块暂时睡眠,然后再次处理,直至全部处理
* 完成。
*/
void inet_twdr_twkill_work(struct work_struct *work)
{
struct inet_timewait_death_row *twdr =
container_of(work, struct inet_timewait_death_row, twkill_work);
int i;
BUILD_BUG_ON((INET_TWDR_TWKILL_SLOTS - 1) >
(sizeof(twdr->thread_slots) * 8));
while (twdr->thread_slots) {
spin_lock_bh(&twdr->death_lock);
for (i = 0; i < INET_TWDR_TWKILL_SLOTS; i++) {
if (!(twdr->thread_slots & (1 << i)))
continue;
while (inet_twdr_do_twkill_work(twdr, i) != 0) {
if (need_resched()) {
spin_unlock_bh(&twdr->death_lock);
schedule();
spin_lock_bh(&twdr->death_lock);
}
}
twdr->thread_slots &= ~(1 << i);
}
spin_unlock_bh(&twdr->death_lock);
}
}
EXPORT_SYMBOL_GPL(inet_twdr_twkill_work);
/* These are always called from BH context. See callers in
* tcp_input.c to verify this.
*/
/* This is for handling early-kills of TIME_WAIT sockets. */
void inet_twsk_deschedule(struct inet_timewait_sock *tw,
struct inet_timewait_death_row *twdr)
{
spin_lock(&twdr->death_lock);
if (inet_twsk_del_dead_node(tw)) {
inet_twsk_put(tw);
if (--twdr->tw_count == 0)
del_timer(&twdr->tw_timer);
}
spin_unlock(&twdr->death_lock);
__inet_twsk_kill(tw, twdr->hashinfo);
}
EXPORT_SYMBOL(inet_twsk_deschedule);
/*
* 用于启动FIN_WAIT_2或TIME_WAIT定时器。虽然
* 启动这两个定时器用的是同一个接口,但是
* 根据timewait控制块的tw_substate很明确地区别
* 当前启动的是哪个定时器
* @tw: 已经替代TCP传输控制块的timewait控制块
* @twdr: 管理相关的数据的容器,通常传入全局
* 变量tcp_death_row。
* @timeo: 设定定时器的超时时间
* @timewait_len: 超时时间上限,为TCP_TIMEWAIT_LEN。
*/
void inet_twsk_schedule(struct inet_timewait_sock *tw,
struct inet_timewait_death_row *twdr,
const int timeo, const int timewait_len)
{
struct hlist_head *list;
int slot;
/*
* RTO是超时重传时间(Retransmission timeout)的意思。
* 计时器的RTO应略大于RTT(平均往返时间,
* Round-Trip Time)
* 即:RTO=b*RTT
* 这里b是个大于1的系数。
* 若取b很接近于1,发送端可及时地重传丢失
* 的报文段,因此效率得到提高。
* 但若报文段并未丢失而仅仅是增加了一点时延,
* 那么过早地重传反而会加重网络的负担。
* 因此TCP原先的标准推荐将b值取为2。
*/
/*
* 在重传情况下,重传超时时间采用一种称为
* “指数退避”的方式计算。例如:当重传超
* 时时间为1S的情况下发生了数据重传,我们
* 就用重传超时时间为2S的定时器来重传数据,
* 下一次用4S,一直增加到64S为止(参见tcp_retransmit_timer())。
* 所以这里的RTO*3.5=RTO*0.5+RTO*1+RTO*2,其中RTO*0.5是
* 第一次发送ACK的时间到对端的超时时间(系
* 数就是乘以RTO的值),RTO*1是对端第一次重传FIN
* 包到ACK包到达对端的超时时间,RTO*2是对端第
* 二次重传FIN包到ACK包到达对端的超时时间。注意
* ,重传超时时间的指数退避操作(就是乘以2)是在
* 重传之后执行的,所以第一次重传的超时时间和
* 第一次发送的超时时间相同。
*/
/* timeout := RTO * 3.5
*
* 3.5 = 1+2+0.5 to wait for two retransmits.
*
* RATIONALE: if FIN arrived and we entered TIME-WAIT state,
* our ACK acking that FIN can be lost. If N subsequent retransmitted
* FINs (or previous seqments) are lost (probability of such event
* is p^(N+1), where p is probability to lose single packet and
* time to detect the loss is about RTO*(2^N - 1) with exponential
* backoff). Normal timewait length is calculated so, that we
* waited at least for one retransmitted FIN (maximal RTO is 120sec).
* [ BTW Linux. following BSD, violates this requirement waiting
* only for 60sec, we should wait at least for 240 secs.
* Well, 240 consumes too much of resources 8)
* ]
* This interval is not reduced to catch old duplicate and
* responses to our wandering segments living for two MSLs.
* However, if we use PAWS to detect
* old duplicates, we can reduce the interval to bounds required
* by RTO, rather than MSL. So, if peer understands PAWS, we
* kill tw bucket after 3.5*RTO (it is important that this number
* is greater than TS tick!) and detect old duplicates with help
* of PAWS.
*/
/*
* TIME_WAIT超时时间除以INET_TWDR_RECYCLE_TICK后
* 向上取整,用来判断将该timewait控制块添加
* 到cells还是twcal_row散列表中。
* 如果得到值大于或等于INET_TWDR_RECYCLE_SLOTS,
* 则将其添加到cells散列表中,否则添加到
* twcal_row散列表中
*/
slot = (timeo + (1 << INET_TWDR_RECYCLE_TICK) - 1) >> INET_TWDR_RECYCLE_TICK;
spin_lock(&twdr->death_lock);
/* Unlink it, if it was scheduled */
/*
* 如果该timewait控制块已经被调度,从散列表中摘除,
* 并需要递减当前系统中处于TIME_wAIT状态的套接字数
*/
if (inet_twsk_del_dead_node(tw))
twdr->tw_count--; //在该函数inet_twsk_schedule外面的inet_twsk_put中是否timewait空间
else
atomic_inc(&tw->tw_refcnt);
if (slot >= INET_TWDR_RECYCLE_SLOTS) { //这里的slot是根据定时器超时时间timeo来的,所以就相当于根据超时时间把timewait散列到cells表中。
/*
* 准备添加到cells散列表中。设置timewait控制块
* 超时删除时间,并计算添加到cells散列表的
* 哪个桶中
*/
/* Schedule to slow timer */
if (timeo >= timewait_len) {
slot = INET_TWDR_TWKILL_SLOTS - 1;
} else {
slot = DIV_ROUND_UP(timeo, twdr->period);//这个相当于是计算timeo是twdr->period的几倍,也就是几个TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS
if (slot >= INET_TWDR_TWKILL_SLOTS) //这样就可以按照时间散列到cell中,表示有多少个slot个TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS
slot = INET_TWDR_TWKILL_SLOTS - 1;
}
tw->tw_ttd = jiffies + timeo;
slot = (twdr->slot + slot) & (INET_TWDR_TWKILL_SLOTS - 1);
list = &twdr->cells[slot];
} else {
/*
* 准备添加到twcal_row散列表中。如果twcal_row
* 散列表为空,则先设置下次超时时处理的
* 桶,然后设置超时时间后启动定时器。
* 如果twcal_row散列表不为空,且本次超时时间
* 遭遇该定时器的超时时间,则需重新设置
* 定时器的超时时间。
* 最后获取添加到twcal_row散列表的哪个桶
*/
tw->tw_ttd = jiffies + (slot << INET_TWDR_RECYCLE_TICK);
if (twdr->twcal_hand < 0) {
twdr->twcal_hand = 0;
twdr->twcal_jiffie = jiffies;
twdr->twcal_timer.expires = twdr->twcal_jiffie +
(slot << INET_TWDR_RECYCLE_TICK);
add_timer(&twdr->twcal_timer);
} else {
if (time_after(twdr->twcal_timer.expires,
jiffies + (slot << INET_TWDR_RECYCLE_TICK)))
mod_timer(&twdr->twcal_timer,
jiffies + (slot << INET_TWDR_RECYCLE_TICK));
slot = (twdr->twcal_hand + slot) & (INET_TWDR_RECYCLE_SLOTS - 1);
}
list = &twdr->twcal_row[slot];
}
/*
* 将timewait控制块添加到相应的散列表中。
*/
hlist_add_head(&tw->tw_death_node, list);
/*
* 如果系统之前不存在timewait控制块,
* 则需设定tw_timer定时器。
*/ //inet_twdr_hangman
if (twdr->tw_count++ == 0) //真正的timewait控制块在这里面删除 tw_timer定时器回调函数是inet_twdr_hangman
mod_timer(&twdr->tw_timer, jiffies + twdr->period);//注意,这个是tcp_death_row里面的定时器,需要一直运行着,注意和inet_csk_init_xmit_timers中几种定时器的区别
spin_unlock(&twdr->death_lock);
}
void inet_twsk_schedule1(struct inet_timewait_sock *tw,
struct inet_timewait_death_row *twdr,
const int timeo, const int timewait_len)
{
struct hlist_head *list;
int slot;
/* timeout := RTO * 3.5
*
* 3.5 = 1+2+0.5 to wait for two retransmits.
*
* RATIONALE: if FIN arrived and we entered TIME-WAIT state,
* our ACK acking that FIN can be lost. If N subsequent retransmitted
* FINs (or previous seqments) are lost (probability of such event
* is p^(N+1), where p is probability to lose single packet and
* time to detect the loss is about RTO*(2^N - 1) with exponential
* backoff). Normal timewait length is calculated so, that we
* waited at least for one retransmitted FIN (maximal RTO is 120sec).
* [ BTW Linux. following BSD, violates this requirement waiting
* only for 60sec, we should wait at least for 240 secs.
* Well, 240 consumes too much of resources 8)
* ]
* This interval is not reduced to catch old duplicate and
* responces to our wandering segments living for two MSLs.
* However, if we use PAWS to detect
* old duplicates, we can reduce the interval to bounds required
* by RTO, rather than MSL. So, if peer understands PAWS, we
* kill tw bucket after 3.5*RTO (it is important that this number
* is greater than TS tick!) and detect old duplicates with help
* of PAWS.
*/
slot = (timeo + (1 << INET_TWDR_RECYCLE_TICK) - 1) >> INET_TWDR_RECYCLE_TICK;
spin_lock(&twdr->death_lock);
/* Unlink it, if it was scheduled */
if (inet_twsk_del_dead_node(tw))
twdr->tw_count--;
else
atomic_inc(&tw->tw_refcnt);
if (slot >= INET_TWDR_RECYCLE_SLOTS) {
/* Schedule to slow timer */
if (timeo >= timewait_len) {
slot = INET_TWDR_TWKILL_SLOTS - 1;
} else {
slot = DIV_ROUND_UP(timeo, twdr->period);
if (slot >= INET_TWDR_TWKILL_SLOTS)
slot = INET_TWDR_TWKILL_SLOTS - 1;
}
tw->tw_ttd = jiffies + timeo;
slot = (twdr->slot + slot) & (INET_TWDR_TWKILL_SLOTS - 1);
list = &twdr->cells[slot];
} else {
tw->tw_ttd = jiffies + (slot << INET_TWDR_RECYCLE_TICK);
if (twdr->twcal_hand < 0) {
twdr->twcal_hand = 0;
twdr->twcal_jiffie = jiffies;
twdr->twcal_timer.expires = twdr->twcal_jiffie +
(slot << INET_TWDR_RECYCLE_TICK);
add_timer(&twdr->twcal_timer);
} else {
if (time_after(twdr->twcal_timer.expires,
jiffies + (slot << INET_TWDR_RECYCLE_TICK)))
mod_timer(&twdr->twcal_timer,
jiffies + (slot << INET_TWDR_RECYCLE_TICK));
slot = (twdr->twcal_hand + slot) & (INET_TWDR_RECYCLE_SLOTS - 1);
}
list = &twdr->twcal_row[slot];
}
hlist_add_head(&tw->tw_death_node, list);
if (twdr->tw_count++ == 0)
mod_timer(&twdr->tw_timer, jiffies + twdr->period);
spin_unlock(&twdr->death_lock);
}
EXPORT_SYMBOL_GPL(inet_twsk_schedule);
/*
* twcal_timer定时器的例程,该定时器超时后,
* 会遍历twcal_row散列表,清除其中已超时
* 的timewait控制块
*/
void inet_twdr_twcal_tick(unsigned long data)
{
struct inet_timewait_death_row *twdr;
int n, slot;
unsigned long j;
unsigned long now = jiffies;
int killed = 0;
int adv = 0;
twdr = (struct inet_timewait_death_row *)data;
spin_lock(&twdr->death_lock);
/*
* twcal_hand小于0,表示twcal_row散列表中不存在
* timewait控制块,因此在遍历之前需先校验。
*/
if (twdr->twcal_hand < 0)
goto out;
/*
* 获取本次遍历twcal_row散列表的入口。同时
* 取得该散列表入口队列上的超时时间,
* 用于检测timewait控制块是否已超时
*/
slot = twdr->twcal_hand;
j = twdr->twcal_jiffie;
/*
* 遍历twcal_row散列表,删除已超时的timewait控制块
*/
for (n = 0; n < INET_TWDR_RECYCLE_SLOTS; n++) {
/*
* 如果当前入口链表中的timewait控制块已超时,
* 则将其从twcal_row以及bhash、ehash散列表中删除,
* 然后将其释放,最后统计本次删除释放的
* timewait控制块数。
*/
if (time_before_eq(j, now)) {
struct hlist_node *node, *safe;
struct inet_timewait_sock *tw;
inet_twsk_for_each_inmate_safe(tw, node, safe,
&twdr->twcal_row[slot]) {
__inet_twsk_del_dead_node(tw);
__inet_twsk_kill(tw, twdr->hashinfo);
#ifdef CONFIG_NET_NS
NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_TIMEWAITKILLED);
#endif
inet_twsk_put(tw);
killed++;
}
} else {
/*
* 当遍历到超时时间小于当前超时时间内,说明
* 超时的timewait控制块已全部处理完成,可以设置
* 下一次超时的twcal_jiffie和入口twcal_hand。然后在剩下
* 的散列表中查找是否还有未超时的timewait控制块,
* 如果有则重新设置超时时间后返回,否则说明
* 所有的timewait控制块都已清除,需将twcal_hand设置为-1.
*/
if (!adv) {
adv = 1;
twdr->twcal_jiffie = j;
twdr->twcal_hand = slot;
}
if (!hlist_empty(&twdr->twcal_row[slot])) {
mod_timer(&twdr->twcal_timer, j);
goto out;
}
}
/*
* 在遍历timewait控制块时,需要入口的关键字
* 及入口链表上的超时时间。
*/
j += 1 << INET_TWDR_RECYCLE_TICK;
slot = (slot + 1) & (INET_TWDR_RECYCLE_SLOTS - 1);
}
twdr->twcal_hand = -1;
/*
* 如果当前系统timewait控制块数为零,则
* 停止tw_timer定时器。
*/
out:
if ((twdr->tw_count -= killed) == 0)
del_timer(&twdr->tw_timer);
#ifndef CONFIG_NET_NS
NET_ADD_STATS_BH(&init_net, LINUX_MIB_TIMEWAITKILLED, killed);
#endif
spin_unlock(&twdr->death_lock);
}
void inet_twdr_twcal_tick1(unsigned long data)
{
struct inet_timewait_death_row *twdr;
int n, slot;
unsigned long j;
unsigned long now = jiffies;
int killed = 0;
int adv = 0;
twdr = (struct inet_timewait_death_row *)data;
spin_lock(&twdr->death_lock);
if (twdr->twcal_hand < 0)
goto out;
slot = twdr->twcal_hand;
j = twdr->twcal_jiffie;
for (n = 0; n < INET_TWDR_RECYCLE_SLOTS; n++) {
if (time_before_eq(j, now)) {
struct hlist_node *node, *safe;
struct inet_timewait_sock *tw;
inet_twsk_for_each_inmate_safe(tw, node, safe,
&twdr->twcal_row[slot]) {
__inet_twsk_del_dead_node(tw);
__inet_twsk_kill(tw, twdr->hashinfo);
#ifdef CONFIG_NET_NS
NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_TIMEWAITKILLED);
#endif
inet_twsk_put(tw);
killed++;
}
} else {
if (!adv) {
adv = 1;
twdr->twcal_jiffie = j;
twdr->twcal_hand = slot;
}
if (!hlist_empty(&twdr->twcal_row[slot])) {
mod_timer(&twdr->twcal_timer, j);
goto out;
}
}
j += 1 << INET_TWDR_RECYCLE_TICK;
slot = (slot + 1) & (INET_TWDR_RECYCLE_SLOTS - 1);
}
twdr->twcal_hand = -1;
out:
if ((twdr->tw_count -= killed) == 0)
del_timer(&twdr->tw_timer);
#ifndef CONFIG_NET_NS
NET_ADD_STATS_BH(&init_net, LINUX_MIB_TIMEWAITKILLED, killed);
#endif
spin_unlock(&twdr->death_lock);
}
EXPORT_SYMBOL_GPL(inet_twdr_twcal_tick);
void inet_twsk_purge(struct inet_hashinfo *hashinfo,
struct inet_timewait_death_row *twdr, int family)
{
struct inet_timewait_sock *tw;
struct sock *sk;
struct hlist_nulls_node *node;
unsigned int slot;
for (slot = 0; slot <= hashinfo->ehash_mask; slot++) {
struct inet_ehash_bucket *head = &hashinfo->ehash[slot];
restart_rcu:
rcu_read_lock();
restart:
sk_nulls_for_each_rcu(sk, node, &head->twchain) {
tw = inet_twsk(sk);
if ((tw->tw_family != family) ||
atomic_read(&twsk_net(tw)->count))
continue;
if (unlikely(!atomic_inc_not_zero(&tw->tw_refcnt)))
continue;
if (unlikely((tw->tw_family != family) ||
atomic_read(&twsk_net(tw)->count))) {
inet_twsk_put(tw);
goto restart;
}
rcu_read_unlock();
inet_twsk_deschedule(tw, twdr);
inet_twsk_put(tw);
goto restart_rcu;
}
/* If the nulls value we got at the end of this lookup is
* not the expected one, we must restart lookup.
* We probably met an item that was moved to another chain.
*/
if (get_nulls_value(node) != slot)
goto restart;
rcu_read_unlock();
}
}
EXPORT_SYMBOL_GPL(inet_twsk_purge);