11{
2- "nbformat" : 4 ,
3- "nbformat_minor" : 0 ,
4- "metadata" : {
5- "colab" : {
6- "name" : " Transformer" ,
7- "provenance" : [],
8- "collapsed_sections" : []
9- },
10- "kernelspec" : {
11- "name" : " python3" ,
12- "display_name" : " Python 3"
13- },
14- "accelerator" : " GPU"
15- },
162 "cells" : [
173 {
184 "cell_type" : " markdown" ,
4329 }
4430 },
4531 "source" : [
46- " Install the packages"
32+ " ### Install the packages"
4733 ]
4834 },
4935 {
5036 "cell_type" : " code" ,
37+ "execution_count" : null ,
5138 "metadata" : {
52- "id" : " ZCzmCrAIVg0L" ,
5339 "colab" : {
5440 "base_uri" : " https://localhost:8080/"
5541 },
42+ "id" : " ZCzmCrAIVg0L" ,
5643 "outputId" : " cf107fb2-4d50-4c67-af34-367624553421" ,
5744 "pycharm" : {
5845 "name" : " #%%\n "
5946 }
6047 },
48+ "outputs" : [],
49+ "source" : [
50+ " !pip install labml-nn comet_ml --quiet"
51+ ]
52+ },
53+ {
54+ "cell_type" : " markdown" ,
55+ "metadata" : {},
6156 "source" : [
62- " !pip install labml-nn comet_ml"
63- ],
57+ " ### Enable [Comet](https://www.comet.ml)"
58+ ]
59+ },
60+ {
61+ "cell_type" : " code" ,
6462 "execution_count" : null ,
65- "outputs" : []
63+ "metadata" : {},
64+ "outputs" : [],
65+ "source" : [
66+ " #@markdown Select in order to enable logging this experiment to [Comet](https://www.comet.ml).\n " ,
67+ " use_comet = True #@param {type:\" boolean\" }\n " ,
68+ " \n " ,
69+ " if use_comet:\n " ,
70+ " import comet_ml\n " ,
71+ " comet_ml.init(project_name='transformer')"
72+ ]
6673 },
6774 {
6875 "cell_type" : " markdown" ,
7380 }
7481 },
7582 "source" : [
76- " Imports"
83+ " ### Imports"
7784 ]
7885 },
7986 {
8087 "cell_type" : " code" ,
88+ "execution_count" : null ,
8189 "metadata" : {
8290 "id" : " 0hJXx_g0wS2C" ,
8391 "pycharm" : {
8492 "name" : " #%%\n "
8593 }
8694 },
95+ "outputs" : [],
8796 "source" : [
8897 " import torch\n " ,
8998 " import torch.nn as nn\n " ,
9099 " \n " ,
91100 " from labml import experiment\n " ,
92101 " from labml.configs import option\n " ,
93102 " from labml_nn.transformers.basic.autoregressive_experiment import Configs"
94- ],
95- "execution_count" : null ,
96- "outputs" : []
97- },
98- {
99- "cell_type" : " markdown" ,
100- "source" : [
101- " Set [Comet](https://www.comet.ml) api-key and the workspace."
102- ],
103- "metadata" : {
104- "collapsed" : false ,
105- "pycharm" : {
106- "name" : " #%% md\n "
107- }
108- }
109- },
110- {
111- "cell_type" : " code" ,
112- "execution_count" : null ,
113- "outputs" : [],
114- "source" : [
115- " import os\n " ,
116- " \n " ,
117- " os.environ['COMET_API_KEY'] = \"\"\n " ,
118- " os.environ['COMET_WORKSPACE'] = \"\" "
119- ],
120- "metadata" : {
121- "collapsed" : false ,
122- "pycharm" : {
123- "name" : " #%%\n "
124- }
125- }
103+ ]
126104 },
127105 {
128106 "cell_type" : " markdown" ,
133111 }
134112 },
135113 "source" : [
136- " Create an experiment"
114+ " ### Create an experiment"
137115 ]
138116 },
139117 {
140118 "cell_type" : " code" ,
119+ "execution_count" : null ,
141120 "metadata" : {
142121 "id" : " bFcr9k-l4cAg" ,
143122 "pycharm" : {
144123 "name" : " #%%\n "
145124 }
146125 },
126+ "outputs" : [],
147127 "source" : [
148- " experiment.create(name=\" transformer\" , writers={'screen', 'web_api', 'comet'})"
149- ],
150- "execution_count" : null ,
151- "outputs" : []
128+ " experiment.create(name=\" transformer\" , writers={\" screen\" , \" comet\" } if use_comet else {'screen'})"
129+ ]
152130 },
153131 {
154132 "cell_type" : " markdown" ,
159137 }
160138 },
161139 "source" : [
162- " Initialize configurations "
140+ " ### Configurations "
163141 ]
164142 },
165143 {
166144 "cell_type" : " code" ,
145+ "execution_count" : null ,
167146 "metadata" : {
168147 "id" : " Piz0c5f44hRo" ,
169148 "pycharm" : {
170149 "name" : " #%%\n "
171150 }
172151 },
152+ "outputs" : [],
173153 "source" : [
174154 " conf = Configs()"
175- ],
176- "execution_count" : null ,
177- "outputs" : []
155+ ]
178156 },
179157 {
180158 "cell_type" : " markdown" ,
190168 },
191169 {
192170 "cell_type" : " code" ,
171+ "execution_count" : null ,
193172 "metadata" : {
194173 "colab" : {
195174 "base_uri" : " https://localhost:8080/" ,
201180 "name" : " #%%\n "
202181 }
203182 },
183+ "outputs" : [],
204184 "source" : [
205185 " experiment.configs(conf, {\n " ,
206186 " # Use character level tokenizer\n " ,
231211 " 'optimizer.optimizer': 'Noam',\n " ,
232212 " 'optimizer.learning_rate': 1.,\n " ,
233213 " })"
234- ],
235- "execution_count" : null ,
236- "outputs" : []
214+ ]
237215 },
238216 {
239217 "cell_type" : " markdown" ,
249227 },
250228 {
251229 "cell_type" : " code" ,
230+ "execution_count" : null ,
252231 "metadata" : {
253232 "colab" : {
254233 "base_uri" : " https://localhost:8080/" ,
260239 "name" : " #%%\n "
261240 }
262241 },
242+ "outputs" : [],
263243 "source" : [
264244 " experiment.add_pytorch_models({'model': conf.model})"
265- ],
266- "execution_count" : null ,
267- "outputs" : []
245+ ]
268246 },
269247 {
270248 "cell_type" : " markdown" ,
275253 }
276254 },
277255 "source" : [
278- " Start the experiment and run the training loop."
256+ " ### Start the experiment and run the training loop."
279257 ]
280258 },
281259 {
282260 "cell_type" : " code" ,
261+ "execution_count" : null ,
283262 "metadata" : {
284263 "colab" : {
285264 "base_uri" : " https://localhost:8080/" ,
291270 "name" : " #%%\n "
292271 }
293272 },
273+ "outputs" : [],
294274 "source" : [
295275 " # Start the experiment\n " ,
296276 " with experiment.start():\n " ,
297277 " conf.run()"
298- ],
299- "execution_count" : null ,
300- "outputs" : []
278+ ]
301279 },
302280 {
303281 "cell_type" : " code" ,
282+ "execution_count" : null ,
304283 "metadata" : {
305284 "id" : " oBXXlP2b7XZO" ,
306285 "pycharm" : {
307286 "name" : " #%%\n "
308287 }
309288 },
310- "source" : [],
311- "execution_count" : null ,
312- "outputs" : []
289+ "outputs" : [],
290+ "source" : []
313291 }
314- ]
315- }
292+ ],
293+ "metadata" : {
294+ "accelerator" : " GPU" ,
295+ "colab" : {
296+ "collapsed_sections" : [],
297+ "name" : " Transformer" ,
298+ "provenance" : []
299+ },
300+ "kernelspec" : {
301+ "display_name" : " Python 3 (ipykernel)" ,
302+ "language" : " python" ,
303+ "name" : " python3"
304+ },
305+ "language_info" : {
306+ "codemirror_mode" : {
307+ "name" : " ipython" ,
308+ "version" : 3
309+ },
310+ "file_extension" : " .py" ,
311+ "mimetype" : " text/x-python" ,
312+ "name" : " python" ,
313+ "nbconvert_exporter" : " python" ,
314+ "pygments_lexer" : " ipython3" ,
315+ "version" : " 3.7.11"
316+ }
317+ },
318+ "nbformat" : 4 ,
319+ "nbformat_minor" : 4
320+ }
0 commit comments