-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransformer.sh
213 lines (202 loc) · 5.08 KB
/
Transformer.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# ALL scripts in this file come from Autoformer
if [ ! -d "./logs" ]; then
mkdir ./logs
fi
if [ ! -d "./logs/LongForecasting" ]; then
mkdir ./logs/LongForecasting
fi
random_seed=2021
model_name=Transformer
for pred_len in 96 192 336 720
do
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path exchange_rate.csv \
--model_id exchange_96_$pred_len \
--model $model_name \
--data custom \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 8 \
--dec_in 8 \
--c_out 8 \
--des 'Exp' \
--itr 1 \
--train_epochs 1 >logs/LongForecasting/$model_name'_exchange_rate_'$pred_len.log
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path electricity.csv \
--model_id electricity_96_$pred_len \
--model $model_name \
--data custom \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 321 \
--dec_in 321 \
--c_out 321 \
--des 'Exp' \
--itr 1 >logs/LongForecasting/$model_name'_electricity_'$pred_len.log
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path traffic.csv \
--model_id traffic_96_$pred_len \
--model $model_name \
--data custom \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 862 \
--dec_in 862 \
--c_out 862 \
--des 'Exp' \
--itr 1 \
--train_epochs 3 >logs/LongForecasting/$model_name'_traffic_'$pred_len.log
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path weather.csv \
--model_id weather_96_$pred_len \
--model $model_name \
--data custom \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 21 \
--dec_in 21 \
--c_out 21 \
--des 'Exp' \
--itr 1 \
--train_epochs 2 >logs/LongForecasting/$model_name'_weather_'$pred_len.log
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path ETTh1.csv \
--model_id ETTh1_96_$pred_len \
--model $model_name \
--data ETTh1 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--itr 1 >logs/LongForecasting/$model_name'_Etth1_'$pred_len.log
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path ETTh2.csv \
--model_id ETTh2_96_$pred_len \
--model $model_name \
--data ETTh2 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--itr 1 >logs/LongForecasting/$model_name'_Etth2_'$pred_len.log
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path ETTm1.csv \
--model_id ETTm1_96_$pred_len \
--model $model_name \
--data ETTm1 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--itr 1 >logs/LongForecasting/$model_name'_Ettm1_'$pred_len.log
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path ETTm2.csv \
--model_id ETTm2_96_$pred_len \
--model $model_name \
--data ETTm2 \
--features M \
--seq_len 96 \
--label_len 48 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--itr 1 >logs/LongForecasting/$model_name'_Ettm2_'$pred_len.log
done
done
for model_name in Autoformer Informer Transformer
do
for pred_len in 24 36 48 60
do
python -u run_longExp.py \
--random_seed $random_seed \
--is_training 1 \
--root_path ./dataset/ \
--data_path national_illness.csv \
--model_id ili_36_$pred_len \
--model $model_name \
--data custom \
--features M \
--seq_len 36 \
--label_len 18 \
--pred_len $pred_len \
--e_layers 2 \
--d_layers 1 \
--factor 3 \
--enc_in 7 \
--dec_in 7 \
--c_out 7 \
--des 'Exp' \
--itr 1 >logs/LongForecasting/$model_name'_ili_'$pred_len.log
done
done