-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_eth.py
218 lines (161 loc) · 8.22 KB
/
main_eth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import random
import argparse
from csv import writer
import torch
import numpy as np
from torch import optim
from torch.optim import lr_scheduler
from utils import *
from models.mart import MART
from loaders.dataloader_eth import TrajectoryDataset
def main():
if args.seed >= 0:
seed = args.seed
setup_seed(seed)
else:
seed = random.randint(0, 1000)
setup_seed(seed)
print('[INFO] The seed is:', seed)
data_root = os.path.join('./datasets/ethucy', args.dataset)
if not args.test:
dataset_train = TrajectoryDataset(args, os.path.join(data_root, 'train'), obs_len=opts.past_length, pred_len=opts.future_length, skip=1)
loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=1, shuffle=True, num_workers=8, drop_last=True)
dataset_test = TrajectoryDataset(args, os.path.join(data_root, 'test'), obs_len=opts.past_length, pred_len=opts.future_length, skip=1)
loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, shuffle=False, num_workers=8)
model = MART(opts).cuda()
print('[INFO] Model params: {}'.format(sum(p.numel() for p in model.parameters())))
optimizer = optim.Adam(model.parameters(), lr=opts.lr, weight_decay=1e-12)
if opts.scheduler_type == 'StepLR':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opts.decay_step, gamma=opts.decay_gamma)
elif opts.scheduler_type == 'MultiStepLR':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=opts.milestones, gamma=opts.decay_gamma)
model_save_dir = os.path.join('./checkpoints', os.path.basename(args.config).split('.')[0])
os.makedirs(model_save_dir, exist_ok=True)
if args.test:
model_name = args.dataset + '_ckpt_best.pth'
model_path = os.path.join(model_save_dir, model_name)
print('[INFO] Loading model from:', model_path)
model_ckpt = torch.load(model_path)
model.load_state_dict(model_ckpt['state_dict'], strict=True)
ade, fde = test(model_ckpt['epoch'], model, loader_test)
os.makedirs('results', exist_ok=True)
with open(os.path.join('./results', '{}_result.csv'.format(args.dataset)), 'w', newline='') as f:
csv_writer = writer(f)
csv_writer.writerow([os.path.basename(args.config).split('.')[0], ade, fde])
exit()
results = {'epochs': [], 'losses': []}
best_val_loss = 1e8
best_ade = 1e8
best_epoch = 0
print('[INFO] The seed is :',seed)
for epoch in range(0, opts.num_epochs):
train(epoch, model, optimizer, loader_train)
test_loss, ade = test(epoch, model, loader_test)
results['epochs'].append(epoch)
results['losses'].append(test_loss)
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
if test_loss < best_val_loss:
best_val_loss = test_loss
best_ade = ade
best_epoch = epoch
file_path = os.path.join(model_save_dir, str(args.dataset) + '_ckpt_best.pth')
torch.save(state, file_path)
print('[INFO] Best {} Loss: {:.5f} \t Best ade: {:.5f} \t Best epoch {}\n'.format('TEST', best_val_loss, best_ade, best_epoch))
file_path = os.path.join(model_save_dir, str(args.dataset) + '_ckpt_' + str(epoch) + '.pth')
if epoch > 0:
remove_file_path = os.path.join(model_save_dir, str(args.dataset) + '_ckpt_' + str(epoch - 1) + '.pth')
os.system('rm ' + remove_file_path)
torch.save(state, file_path)
if opts.scheduler_type is not None:
scheduler.step()
def train(epoch, model, optimizer, loader):
model.train()
avg_meter = {'epoch': epoch, 'loss': 0, 'counter': 0}
loader_len = len(loader)
batch_count, divider = 0, 0
is_first_loss = True
for i, data in enumerate(loader):
optimizer.zero_grad()
batch_count += 1
divider += 1
x_abs, y = data
x_abs, y = x_abs.cuda(), y.cuda()
batch_size, num_agents, length, _ = x_abs.size()
x_rel = torch.zeros_like(x_abs)
x_rel[:, :, 1:] = x_abs[:, :, 1:] - x_abs[:, :, :-1]
x_rel[:, :, 0] = x_rel[:, :, 1]
y_pred = model(x_abs, x_rel)
if opts.pred_rel:
cur_pos = x_abs[:, :, [-1]].unsqueeze(2)
y_pred = torch.cumsum(y_pred, dim=3) + cur_pos
y = y[:, :, None, :, :]
total_loss = torch.mean(torch.min(torch.mean(torch.norm(y_pred - y, dim=-1), dim=3), dim=2)[0]) # for all agents
avg_meter['loss'] += total_loss.item() * batch_size * num_agents
avg_meter['counter'] += (batch_size * num_agents)
if is_first_loss:
loss = total_loss
is_first_loss = False
else:
loss += total_loss
if batch_count % opts.batch_size == 0: # or i == loader_len - 1:
loss = loss / divider
is_first_loss = True
loss.backward()
if opts.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), opts.clip_grad)
optimizer.step()
th = get_th(opts, model)
print('[{}][{}] Epochs: {:02d}/{:02d}| It: {:04d}/{:04d} | Loss: {:03f} | Threshold: {} | LR: {}'
.format(args.dataset.upper(), 'TRAIN', epoch + 1, opts.num_epochs, i + 1, loader_len, total_loss.item(), th, optimizer.param_groups[0]['lr']))
return avg_meter['loss'] / avg_meter['counter']
def test(epoch, model, loader):
model.eval()
avg_meter = {'epoch': epoch, 'ade': 0, 'fde': 0, 'counter': 0}
with torch.no_grad():
for _, data in enumerate(loader):
x_abs, y = data
x_abs, y = x_abs.cuda(), y.cuda()
batch_size, num_agents, length, _ = x_abs.size()
x_rel = torch.zeros_like(x_abs)
x_rel[:, :, 1:] = x_abs[:, :, 1:] - x_abs[:, :, :-1]
x_rel[:, :, 0] = x_rel[:, :, 1]
y_pred = model(x_abs, x_rel)
if opts.pred_rel:
cur_pos = x_abs[:, :, [-1]].unsqueeze(2)
y_pred = torch.cumsum(y_pred, dim=3) + cur_pos
y_pred = np.array(y_pred.cpu()) # B, N, 20, T, 2
y = np.array(y.cpu()) # B, N, T, 2
y = y[:, :, None, :, :]
ade = np.mean(np.min(np.mean(np.linalg.norm(y_pred - y, axis=-1), axis=3), axis=2)) * (num_agents * batch_size)
fde = np.mean(np.min(np.mean(np.linalg.norm(y_pred[:, :, :, -1:] - y[:, :, :, -1:], axis=-1), axis=3), axis=2)) * (num_agents * batch_size)
avg_meter['ade'] += ade
avg_meter['fde'] += fde
avg_meter['counter'] += (num_agents * batch_size)
th = get_th(opts, model)
print('\n[{}][{}] Epoch {} th: {}'.format(args.dataset.upper(), 'TEST', epoch, th))
print('[{}][{}] minADE/minFDE: {:.2f}/{:.2f}'.format(args.dataset.upper(), 'TEST', avg_meter['ade'] / avg_meter['counter'], avg_meter['fde'] / avg_meter['counter']))
return avg_meter['fde'] / avg_meter['counter'], avg_meter['ade'] / avg_meter['counter']
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MART for Trajectory Prediction')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--dataset', type=str, default='eth', metavar='N', help='dataset name')
parser.add_argument('--config', type=str, default='configs/mart_eth_reproduce.yaml', help='config path')
parser.add_argument('--gpu', type=str, default="0", help='gpu id')
parser.add_argument("--test", action='store_true')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
opts = load_config(args.config)
if args.dataset == 'eth' or args.dataset == 'univ':
opts.lr = 0.001
elif args.dataset == 'zara1' or args.dataset == 'zara2':
opts.lr = 0.0012
else:
opts.lr = 0.0018
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
main()