@@ -1592,7 +1592,7 @@ func @depthwise_conv(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tensor<3x1x3x11xf32>,
1592
1592
// CHECK: [[CST0:%.+]] = arith.constant 0
1593
1593
// CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
1594
1594
// CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33]
1595
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
1595
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
1596
1596
// CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
1597
1597
// CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) {
1598
1598
// CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
@@ -1614,7 +1614,7 @@ func @depthwise_conv_strides(%arg0 : tensor<1x11x9x3xf32>, %arg1 : tensor<3x1x3x
1614
1614
// CHECK: [[CST0:%.+]] = arith.constant 0
1615
1615
// CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]])
1616
1616
// CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33]
1617
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
1617
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>)
1618
1618
// CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
1619
1619
// CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) {
1620
1620
// CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors
@@ -1642,7 +1642,7 @@ func @depthwise_conv_quant(%arg0 : tensor<1x12x12x4xi8>, %arg1 : tensor<3x3x4x12
1642
1642
// CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 12, 12, 512]
1643
1643
// CHECK: [[C128:%.+]] = arith.constant -128
1644
1644
// CHECK: [[C42:%.+]] = arith.constant 42
1645
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins([[PAD]], %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x12x12x4x128xi32>)
1645
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins([[PAD]], %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x12x12x4x128xi32>)
1646
1646
// CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
1647
1647
// CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x12x12x512xi32>) outs([[OUT]] : tensor<1x12x12x512xi32>) {
1648
1648
// CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors
@@ -1666,7 +1666,7 @@ func @depthwise_conv_quant_dilations(%arg0 : tensor<1x14x14x4xi8>, %arg1 : tenso
1666
1666
// CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 10, 10, 512]
1667
1667
// CHECK: [[C128:%.+]] = arith.constant -128
1668
1668
// CHECK: [[C42:%.+]] = arith.constant 42
1669
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc_q {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x10x10x4x128xi32>)
1669
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x10x10x4x128xi32>)
1670
1670
// CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
1671
1671
// CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x10x10x512xi32>) outs([[OUT]] : tensor<1x10x10x512xi32>) {
1672
1672
// CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors
0 commit comments