|
| 1 | +//===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | +// |
| 9 | +// This file implements class that drive and introspect deterministic finite- |
| 10 | +// state automata (DFAs) as generated by TableGen's -gen-automata backend. |
| 11 | +// |
| 12 | +// For a description of how to define an automaton, see |
| 13 | +// include/llvm/TableGen/Automaton.td. |
| 14 | +// |
| 15 | +// One important detail is that these deterministic automata are created from |
| 16 | +// (potentially) nondeterministic definitions. Therefore a unique sequence of |
| 17 | +// input symbols will produce one path through the DFA but multiple paths |
| 18 | +// through the original NFA. An automaton by default only returns "accepted" or |
| 19 | +// "not accepted", but frequently we want to analyze what NFA path was taken. |
| 20 | +// Finding a path through the NFA states that results in a DFA state can help |
| 21 | +// answer *what* the solution to a problem was, not just that there exists a |
| 22 | +// solution. |
| 23 | +// |
| 24 | +//===----------------------------------------------------------------------===// |
| 25 | + |
| 26 | +#ifndef LLVM_SUPPORT_AUTOMATON_H |
| 27 | +#define LLVM_SUPPORT_AUTOMATON_H |
| 28 | + |
| 29 | +#include "llvm/ADT/ArrayRef.h" |
| 30 | +#include "llvm/ADT/DenseMap.h" |
| 31 | +#include "llvm/ADT/SmallVector.h" |
| 32 | +#include "llvm/Support/Allocator.h" |
| 33 | +#include <deque> |
| 34 | +#include <map> |
| 35 | +#include <memory> |
| 36 | +#include <unordered_map> |
| 37 | +#include <vector> |
| 38 | + |
| 39 | +namespace llvm { |
| 40 | + |
| 41 | +using NfaPath = SmallVector<uint64_t, 4>; |
| 42 | + |
| 43 | +/// Forward define the pair type used by the automata transition info tables. |
| 44 | +/// |
| 45 | +/// Experimental results with large tables have shown a significant (multiple |
| 46 | +/// orders of magnitude) parsing speedup by using a custom struct here with a |
| 47 | +/// trivial constructor rather than std::pair<uint64_t, uint64_t>. |
| 48 | +struct NfaStatePair { |
| 49 | + uint64_t FromDfaState, ToDfaState; |
| 50 | + |
| 51 | + bool operator<(const NfaStatePair &Other) const { |
| 52 | + return std::make_tuple(FromDfaState, ToDfaState) < |
| 53 | + std::make_tuple(Other.FromDfaState, Other.ToDfaState); |
| 54 | + } |
| 55 | +}; |
| 56 | + |
| 57 | +namespace internal { |
| 58 | +/// The internal class that maintains all possible paths through an NFA based |
| 59 | +/// on a path through the DFA. |
| 60 | +class NfaTranscriber { |
| 61 | +private: |
| 62 | + /// Cached transition table. This is a table of NfaStatePairs that contains |
| 63 | + /// zero-terminated sequences pointed to by DFA transitions. |
| 64 | + ArrayRef<NfaStatePair> TransitionInfo; |
| 65 | + |
| 66 | + /// A simple linked-list of traversed states that can have a shared tail. The |
| 67 | + /// traversed path is stored in reverse order with the latest state as the |
| 68 | + /// head. |
| 69 | + struct PathSegment { |
| 70 | + uint64_t State; |
| 71 | + PathSegment *Tail; |
| 72 | + }; |
| 73 | + |
| 74 | + /// We allocate segment objects frequently. Allocate them upfront and dispose |
| 75 | + /// at the end of a traversal rather than hammering the system allocator. |
| 76 | + SpecificBumpPtrAllocator<PathSegment> Allocator; |
| 77 | + |
| 78 | + /// Heads of each tracked path. These are not ordered. |
| 79 | + std::deque<PathSegment *> Heads; |
| 80 | + |
| 81 | + /// The returned paths. This is populated during getPaths. |
| 82 | + SmallVector<NfaPath, 4> Paths; |
| 83 | + |
| 84 | + /// Create a new segment and return it. |
| 85 | + PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { |
| 86 | + PathSegment *P = Allocator.Allocate(); |
| 87 | + *P = {State, Tail}; |
| 88 | + return P; |
| 89 | + } |
| 90 | + |
| 91 | + /// Pairs defines a sequence of possible NFA transitions for a single DFA |
| 92 | + /// transition. |
| 93 | + void transition(ArrayRef<NfaStatePair> Pairs) { |
| 94 | + // Iterate over all existing heads. We will mutate the Heads deque during |
| 95 | + // iteration. |
| 96 | + unsigned NumHeads = Heads.size(); |
| 97 | + for (auto HeadI = Heads.begin(), HeadE = std::next(Heads.begin(), NumHeads); |
| 98 | + HeadI != HeadE; ++HeadI) { |
| 99 | + PathSegment *Head = *HeadI; |
| 100 | + // The sequence of pairs is sorted. Select the set of pairs that |
| 101 | + // transition from the current head state. |
| 102 | + auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); |
| 103 | + auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); |
| 104 | + // For every transition from the current head state, add a new path |
| 105 | + // segment. |
| 106 | + for (; PI != PE; ++PI) |
| 107 | + if (PI->FromDfaState == Head->State) |
| 108 | + Heads.push_back(makePathSegment(PI->ToDfaState, Head)); |
| 109 | + } |
| 110 | + // Now we've iterated over all the initial heads and added new ones, |
| 111 | + // dispose of the original heads. |
| 112 | + Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); |
| 113 | + } |
| 114 | + |
| 115 | +public: |
| 116 | + NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo) |
| 117 | + : TransitionInfo(TransitionInfo) { |
| 118 | + reset(); |
| 119 | + } |
| 120 | + |
| 121 | + void reset() { |
| 122 | + Paths.clear(); |
| 123 | + Heads.clear(); |
| 124 | + Allocator.DestroyAll(); |
| 125 | + // The initial NFA state is 0. |
| 126 | + Heads.push_back(makePathSegment(0ULL, nullptr)); |
| 127 | + } |
| 128 | + |
| 129 | + void transition(unsigned TransitionInfoIdx) { |
| 130 | + unsigned EndIdx = TransitionInfoIdx; |
| 131 | + while (TransitionInfo[EndIdx].ToDfaState != 0) |
| 132 | + ++EndIdx; |
| 133 | + ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx], |
| 134 | + EndIdx - TransitionInfoIdx); |
| 135 | + transition(Pairs); |
| 136 | + } |
| 137 | + |
| 138 | + ArrayRef<NfaPath> getPaths() { |
| 139 | + Paths.clear(); |
| 140 | + for (auto *Head : Heads) { |
| 141 | + NfaPath P; |
| 142 | + while (Head->State != 0) { |
| 143 | + P.push_back(Head->State); |
| 144 | + Head = Head->Tail; |
| 145 | + } |
| 146 | + std::reverse(P.begin(), P.end()); |
| 147 | + Paths.push_back(std::move(P)); |
| 148 | + } |
| 149 | + return Paths; |
| 150 | + } |
| 151 | +}; |
| 152 | +} // namespace internal |
| 153 | + |
| 154 | +/// A deterministic finite-state automaton. The automaton is defined in |
| 155 | +/// TableGen; this object drives an automaton defined by tblgen-emitted tables. |
| 156 | +/// |
| 157 | +/// An automaton accepts a sequence of input tokens ("actions"). This class is |
| 158 | +/// templated on the type of these actions. |
| 159 | +template <typename ActionT> class Automaton { |
| 160 | + /// Map from {State, Action} to {NewState, TransitionInfoIdx}. |
| 161 | + /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. |
| 162 | + /// FIXME: This uses a std::map because ActionT can be a pair type including |
| 163 | + /// an enum. In particular DenseMapInfo<ActionT> must be defined to use |
| 164 | + /// DenseMap here. |
| 165 | + std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>> M; |
| 166 | + /// An optional transcription object. This uses much more state than simply |
| 167 | + /// traversing the DFA for acceptance, so is heap allocated. |
| 168 | + std::unique_ptr<internal::NfaTranscriber> Transcriber; |
| 169 | + /// The initial DFA state is 1. |
| 170 | + uint64_t State = 1; |
| 171 | + |
| 172 | +public: |
| 173 | + /// Create an automaton. |
| 174 | + /// \param Transitions The Transitions table as created by TableGen. Note that |
| 175 | + /// because the action type differs per automaton, the |
| 176 | + /// table type is templated as ArrayRef<InfoT>. |
| 177 | + /// \param TranscriptionTable The TransitionInfo table as created by TableGen. |
| 178 | + /// |
| 179 | + /// Providing the TranscriptionTable argument as non-empty will enable the |
| 180 | + /// use of transcription, which analyzes the possible paths in the original |
| 181 | + /// NFA taken by the DFA. NOTE: This is substantially more work than simply |
| 182 | + /// driving the DFA, so unless you require the getPaths() method leave this |
| 183 | + /// empty. |
| 184 | + template <typename InfoT> |
| 185 | + Automaton(ArrayRef<InfoT> Transitions, |
| 186 | + ArrayRef<NfaStatePair> TranscriptionTable = {}) { |
| 187 | + if (!TranscriptionTable.empty()) |
| 188 | + Transcriber = |
| 189 | + std::make_unique<internal::NfaTranscriber>(TranscriptionTable); |
| 190 | + for (const auto &I : Transitions) |
| 191 | + // Greedily read and cache the transition table. |
| 192 | + M.emplace(std::make_pair(I.FromDfaState, I.Action), |
| 193 | + std::make_pair(I.ToDfaState, I.InfoIdx)); |
| 194 | + } |
| 195 | + |
| 196 | + /// Reset the automaton to its initial state. |
| 197 | + void reset() { |
| 198 | + State = 1; |
| 199 | + if (Transcriber) |
| 200 | + Transcriber->reset(); |
| 201 | + } |
| 202 | + |
| 203 | + /// Transition the automaton based on input symbol A. Return true if the |
| 204 | + /// automaton transitioned to a valid state, false if the automaton |
| 205 | + /// transitioned to an invalid state. |
| 206 | + /// |
| 207 | + /// If this function returns false, all methods are undefined until reset() is |
| 208 | + /// called. |
| 209 | + bool add(const ActionT &A) { |
| 210 | + auto I = M.find({State, A}); |
| 211 | + if (I == M.end()) |
| 212 | + return false; |
| 213 | + if (Transcriber) |
| 214 | + Transcriber->transition(I->second.second); |
| 215 | + State = I->second.first; |
| 216 | + return true; |
| 217 | + } |
| 218 | + |
| 219 | + /// Obtain a set of possible paths through the input nondeterministic |
| 220 | + /// automaton that could be obtained from the sequence of input actions |
| 221 | + /// presented to this deterministic automaton. |
| 222 | + ArrayRef<NfaPath> getNfaPaths() { |
| 223 | + assert(Transcriber && "Can only obtain NFA paths if transcribing!"); |
| 224 | + return Transcriber->getPaths(); |
| 225 | + } |
| 226 | +}; |
| 227 | + |
| 228 | +} // namespace llvm |
| 229 | + |
| 230 | +#endif // LLVM_SUPPORT_AUTOMATON_H |
0 commit comments