Skip to content

Commit 691814f

Browse files
committed
[flang] Fix test regression from SQRT folding
The algorithm used to fold SQRT has some holes that led to test failures; debug and add more tests. Differential Revision: https://reviews.llvm.org/D110744
1 parent 8dfbe9b commit 691814f

File tree

2 files changed

+38
-11
lines changed

2 files changed

+38
-11
lines changed

flang/lib/Evaluate/real.cpp

+28-9
Original file line numberDiff line numberDiff line change
@@ -280,15 +280,34 @@ ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const {
280280
// SQRT(+Inf) == +Inf
281281
result.value = Infinity(false);
282282
} else {
283-
// Slow but reliable bit-at-a-time method. Start with a clear significand
284-
// and half the unbiased exponent, and then try to set significand bits
285-
// in descending order of magnitude without exceeding the exact result.
286283
int expo{UnbiasedExponent()};
287-
if (IsSubnormal()) {
288-
expo -= GetFraction().LEADZ();
284+
if (expo < -1 || expo > 1) {
285+
// Reduce the range to [0.5 .. 4.0) by dividing by an integral power
286+
// of four to avoid trouble with very large and very small values
287+
// (esp. truncation of subnormals).
288+
// SQRT(2**(2a) * x) = SQRT(2**(2a)) * SQRT(x) = 2**a * SQRT(x)
289+
Real scaled;
290+
int adjust{expo / 2};
291+
scaled.Normalize(false, expo - 2 * adjust + exponentBias, GetFraction());
292+
result = scaled.SQRT(rounding);
293+
result.value.Normalize(false,
294+
result.value.UnbiasedExponent() + adjust + exponentBias,
295+
result.value.GetFraction());
296+
return result;
289297
}
298+
// Compute the square root of the reduced value with the slow but
299+
// reliable bit-at-a-time method. Start with a clear significand and
300+
// half of the unbiased exponent, and then try to set significand bits
301+
// in descending order of magnitude without exceeding the exact result.
290302
expo = expo / 2 + exponentBias;
291303
result.value.Normalize(false, expo, Fraction::MASKL(1));
304+
Real initialSq{result.value.Multiply(result.value).value};
305+
if (Compare(initialSq) == Relation::Less) {
306+
// Initial estimate is too large; this can happen for values just
307+
// under 1.0.
308+
--expo;
309+
result.value.Normalize(false, expo, Fraction::MASKL(1));
310+
}
292311
for (int bit{significandBits - 1}; bit >= 0; --bit) {
293312
Word word{result.value.word_};
294313
result.value.word_ = word.IBSET(bit);
@@ -299,10 +318,10 @@ ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const {
299318
result.value.word_ = word;
300319
}
301320
}
302-
// The computed square root, when squared, has a square that's not greater
303-
// than the original argument. Check this square against the square of the
304-
// next Real value, and return that one if its square is closer in magnitude
305-
// to the original argument.
321+
// The computed square root has a square that's not greater than the
322+
// original argument. Check this square against the square of the next
323+
// larger Real and return that one if its square is closer in magnitude to
324+
// the original argument.
306325
Real resultSq{result.value.Multiply(result.value).value};
307326
Real diff{Subtract(resultSq).value.ABS()};
308327
if (diff.IsZero()) {

flang/test/Evaluate/folding28.f90

+10-2
Original file line numberDiff line numberDiff line change
@@ -27,13 +27,21 @@ module m
2727
logical, parameter :: test_sqr_sqrt_t8 = sqr_sqrt_t8 == t8
2828
! max subnormal
2929
real(8), parameter :: maxs8 = z'000fffffffffffff'
30-
real(8), parameter :: sqrt_maxs8 = sqrt(maxs8), sqrt_maxs8z = z'2000000000000000'
30+
real(8), parameter :: sqrt_maxs8 = sqrt(maxs8), sqrt_maxs8z = z'1fffffffffffffff'
3131
logical, parameter :: test_sqrt_maxs8 = sqrt_maxs8 == sqrt_maxs8z
3232
! min subnormal
3333
real(8), parameter :: mins8 = z'1'
3434
real(8), parameter :: sqrt_mins8 = sqrt(mins8), sqrt_mins8z = z'1e60000000000000'
3535
logical, parameter :: test_sqrt_mins8 = sqrt_mins8 == sqrt_mins8z
3636
real(8), parameter :: sqr_sqrt_mins8 = sqrt_mins8 * sqrt_mins8
3737
logical, parameter :: test_sqr_sqrt_mins8 = sqr_sqrt_mins8 == mins8
38+
! regression tests: cases near 1.
39+
real(4), parameter :: sqrt_under1 = sqrt(.96875)
40+
logical, parameter :: test_sqrt_under1 = sqrt_under1 == .984250962734222412109375
41+
! oddball case: the value before 1. is also its own sqrt, but not its own square
42+
real(4), parameter :: before_1 = z'3f7fffff' ! .999999940395355224609375
43+
real(4), parameter :: sqrt_before_1 = sqrt(before_1)
44+
logical, parameter :: test_before_1 = sqrt_before_1 == before_1
45+
real(4), parameter :: sq_sqrt_before_1 = sqrt_before_1 * sqrt_before_1
46+
logical, parameter :: test_sq_before_1 = sq_sqrt_before_1 < before_1
3847
end module
39-

0 commit comments

Comments
 (0)