forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVEISelLowering.cpp
2837 lines (2487 loc) · 105 KB
/
VEISelLowering.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that VE uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "VEISelLowering.h"
#include "MCTargetDesc/VEMCExpr.h"
#include "VECustomDAG.h"
#include "VEInstrBuilder.h"
#include "VEMachineFunctionInfo.h"
#include "VERegisterInfo.h"
#include "VETargetMachine.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
#define DEBUG_TYPE "ve-lower"
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "VEGenCallingConv.inc"
CCAssignFn *getReturnCC(CallingConv::ID CallConv) {
switch (CallConv) {
default:
return RetCC_VE_C;
case CallingConv::Fast:
return RetCC_VE_Fast;
}
}
CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) {
if (IsVarArg)
return CC_VE2;
switch (CallConv) {
default:
return CC_VE_C;
case CallingConv::Fast:
return CC_VE_Fast;
}
}
bool VETargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
CCAssignFn *RetCC = getReturnCC(CallConv);
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC);
}
static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64,
MVT::v256f32, MVT::v512f32, MVT::v256f64};
static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32};
void VETargetLowering::initRegisterClasses() {
// Set up the register classes.
addRegisterClass(MVT::i32, &VE::I32RegClass);
addRegisterClass(MVT::i64, &VE::I64RegClass);
addRegisterClass(MVT::f32, &VE::F32RegClass);
addRegisterClass(MVT::f64, &VE::I64RegClass);
addRegisterClass(MVT::f128, &VE::F128RegClass);
if (Subtarget->enableVPU()) {
for (MVT VecVT : AllVectorVTs)
addRegisterClass(VecVT, &VE::V64RegClass);
addRegisterClass(MVT::v256i1, &VE::VMRegClass);
addRegisterClass(MVT::v512i1, &VE::VM512RegClass);
}
}
void VETargetLowering::initSPUActions() {
const auto &TM = getTargetMachine();
/// Load & Store {
// VE doesn't have i1 sign extending load.
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setTruncStoreAction(VT, MVT::i1, Expand);
}
// VE doesn't have floating point extload/truncstore, so expand them.
for (MVT FPVT : MVT::fp_valuetypes()) {
for (MVT OtherFPVT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand);
setTruncStoreAction(FPVT, OtherFPVT, Expand);
}
}
// VE doesn't have fp128 load/store, so expand them in custom lower.
setOperationAction(ISD::LOAD, MVT::f128, Custom);
setOperationAction(ISD::STORE, MVT::f128, Custom);
/// } Load & Store
// Custom legalize address nodes into LO/HI parts.
MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::JumpTable, PtrVT, Custom);
/// VAARG handling {
setOperationAction(ISD::VASTART, MVT::Other, Custom);
// VAARG needs to be lowered to access with 8 bytes alignment.
setOperationAction(ISD::VAARG, MVT::Other, Custom);
// Use the default implementation.
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
/// } VAARG handling
/// Stack {
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
// Use the default implementation.
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
/// } Stack
/// Branch {
// VE doesn't have BRCOND
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
// BR_JT is not implemented yet.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
/// } Branch
/// Int Ops {
for (MVT IntVT : {MVT::i32, MVT::i64}) {
// VE has no REM or DIVREM operations.
setOperationAction(ISD::UREM, IntVT, Expand);
setOperationAction(ISD::SREM, IntVT, Expand);
setOperationAction(ISD::SDIVREM, IntVT, Expand);
setOperationAction(ISD::UDIVREM, IntVT, Expand);
// VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations.
setOperationAction(ISD::SHL_PARTS, IntVT, Expand);
setOperationAction(ISD::SRA_PARTS, IntVT, Expand);
setOperationAction(ISD::SRL_PARTS, IntVT, Expand);
// VE has no MULHU/S or U/SMUL_LOHI operations.
// TODO: Use MPD instruction to implement SMUL_LOHI for i32 type.
setOperationAction(ISD::MULHU, IntVT, Expand);
setOperationAction(ISD::MULHS, IntVT, Expand);
setOperationAction(ISD::UMUL_LOHI, IntVT, Expand);
setOperationAction(ISD::SMUL_LOHI, IntVT, Expand);
// VE has no CTTZ, ROTL, ROTR operations.
setOperationAction(ISD::CTTZ, IntVT, Expand);
setOperationAction(ISD::ROTL, IntVT, Expand);
setOperationAction(ISD::ROTR, IntVT, Expand);
// VE has 64 bits instruction which works as i64 BSWAP operation. This
// instruction works fine as i32 BSWAP operation with an additional
// parameter. Use isel patterns to lower BSWAP.
setOperationAction(ISD::BSWAP, IntVT, Legal);
// VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP
// operations. Use isel patterns for i64, promote for i32.
LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal;
setOperationAction(ISD::BITREVERSE, IntVT, Act);
setOperationAction(ISD::CTLZ, IntVT, Act);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act);
setOperationAction(ISD::CTPOP, IntVT, Act);
// VE has only 64 bits instructions which work as i64 AND/OR/XOR operations.
// Use isel patterns for i64, promote for i32.
setOperationAction(ISD::AND, IntVT, Act);
setOperationAction(ISD::OR, IntVT, Act);
setOperationAction(ISD::XOR, IntVT, Act);
}
/// } Int Ops
/// Conversion {
// VE doesn't have instructions for fp<->uint, so expand them by llvm
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
// fp16 not supported
for (MVT FPVT : MVT::fp_valuetypes()) {
setOperationAction(ISD::FP16_TO_FP, FPVT, Expand);
setOperationAction(ISD::FP_TO_FP16, FPVT, Expand);
}
/// } Conversion
/// Floating-point Ops {
/// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem,
/// and fcmp.
// VE doesn't have following floating point operations.
for (MVT VT : MVT::fp_valuetypes()) {
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
}
// VE doesn't have fdiv of f128.
setOperationAction(ISD::FDIV, MVT::f128, Expand);
for (MVT FPVT : {MVT::f32, MVT::f64}) {
// f32 and f64 uses ConstantFP. f128 uses ConstantPool.
setOperationAction(ISD::ConstantFP, FPVT, Legal);
}
/// } Floating-point Ops
/// Floating-point math functions {
// VE doesn't have following floating point math functions.
for (MVT VT : MVT::fp_valuetypes()) {
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
}
/// } Floating-point math functions
/// Atomic instructions {
setMaxAtomicSizeInBitsSupported(64);
setMinCmpXchgSizeInBits(32);
setSupportsUnalignedAtomics(false);
// Use custom inserter for ATOMIC_FENCE.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
// Other atomic instructions.
for (MVT VT : MVT::integer_valuetypes()) {
// Support i8/i16 atomic swap.
setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
// FIXME: Support "atmam" instructions.
setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand);
// VE doesn't have follwing instructions.
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
}
/// } Atomic instructions
/// SJLJ instructions {
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
/// } SJLJ instructions
// Intrinsic instructions
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
}
void VETargetLowering::initVPUActions() {
for (MVT LegalVecVT : AllVectorVTs) {
setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal);
// Translate all vector instructions with legal element types to VVP_*
// nodes.
// TODO We will custom-widen into VVP_* nodes in the future. While we are
// buildling the infrastructure for this, we only do this for legal vector
// VTs.
#define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \
setOperationAction(ISD::VP_OPC, LegalVecVT, Custom);
#define ADD_VVP_OP(VVP_NAME, ISD_NAME) \
setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom);
#include "VVPNodes.def"
}
for (MVT LegalPackedVT : AllPackedVTs) {
setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom);
}
}
SDValue
VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv));
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
assert(!VA.needsCustom() && "Unexpected custom lowering");
SDValue OutVal = OutVals[i];
// Integer return values must be sign or zero extended by the callee.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::SExt:
OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::ZExt:
OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::AExt:
OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::BCvt: {
// Convert a float return value to i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Undef = SDValue(
DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
MVT::i64, Undef, OutVal, Sub_f32),
0);
break;
}
default:
llvm_unreachable("Unknown loc info!");
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps);
}
SDValue VETargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
// Get the base offset of the incoming arguments stack space.
unsigned ArgsBaseOffset = Subtarget->getRsaSize();
// Get the size of the preserved arguments area
unsigned ArgsPreserved = 64;
// Analyze arguments according to CC_VE.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// Allocate the preserved area first.
CCInfo.AllocateStack(ArgsPreserved, Align(8));
// We already allocated the preserved area, so the stack offset computed
// by CC_VE would be correct now.
CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
assert(!VA.needsCustom() && "Unexpected custom lowering");
if (VA.isRegLoc()) {
// This argument is passed in a register.
// All integer register arguments are promoted by the caller to i64.
// Create a virtual register for the promoted live-in value.
Register VReg =
MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT()));
SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
// The caller promoted the argument, so insert an Assert?ext SDNode so we
// won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::BCvt: {
// Extract a float argument from i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
MVT::f32, Arg, Sub_f32),
0);
break;
}
default:
break;
}
// Truncate the register down to the argument type.
if (VA.isExtInLoc())
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
InVals.push_back(Arg);
continue;
}
// The registers are exhausted. This argument was passed on the stack.
assert(VA.isMemLoc());
// The CC_VE_Full/Half functions compute stack offsets relative to the
// beginning of the arguments area at %fp + the size of reserved area.
unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset;
unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
// Adjust offset for a float argument by adding 4 since the argument is
// stored in 8 bytes buffer with offset like below. LLVM generates
// 4 bytes load instruction, so need to adjust offset here. This
// adjustment is required in only LowerFormalArguments. In LowerCall,
// a float argument is converted to i64 first, and stored as 8 bytes
// data, which is required by ABI, so no need for adjustment.
// 0 4
// +------+------+
// | empty| float|
// +------+------+
if (VA.getValVT() == MVT::f32)
Offset += 4;
int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
InVals.push_back(
DAG.getLoad(VA.getValVT(), DL, Chain,
DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
MachinePointerInfo::getFixedStack(MF, FI)));
}
if (!IsVarArg)
return Chain;
// This function takes variable arguments, some of which may have been passed
// in registers %s0-%s8.
//
// The va_start intrinsic needs to know the offset to the first variable
// argument.
// TODO: need to calculate offset correctly once we support f128.
unsigned ArgOffset = ArgLocs.size() * 8;
VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
// Skip the reserved area at the top of stack.
FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset);
return Chain;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = StringSwitch<Register>(RegName)
.Case("sp", VE::SX11) // Stack pointer
.Case("fp", VE::SX9) // Frame pointer
.Case("sl", VE::SX8) // Stack limit
.Case("lr", VE::SX10) // Link register
.Case("tp", VE::SX14) // Thread pointer
.Case("outer", VE::SX12) // Outer regiser
.Case("info", VE::SX17) // Info area register
.Case("got", VE::SX15) // Global offset table register
.Case("plt", VE::SX16) // Procedure linkage table register
.Default(0);
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SDValue Chain = CLI.Chain;
auto PtrVT = getPointerTy(DAG.getDataLayout());
// VE target does not yet support tail call optimization.
CLI.IsTailCall = false;
// Get the base offset of the outgoing arguments stack space.
unsigned ArgsBaseOffset = Subtarget->getRsaSize();
// Get the size of the preserved arguments area
unsigned ArgsPreserved = 8 * 8u;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// Allocate the preserved area first.
CCInfo.AllocateStack(ArgsPreserved, Align(8));
// We already allocated the preserved area, so the stack offset computed
// by CC_VE would be correct now.
CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false));
// VE requires to use both register and stack for varargs or no-prototyped
// functions.
bool UseBoth = CLI.IsVarArg;
// Analyze operands again if it is required to store BOTH.
SmallVector<CCValAssign, 16> ArgLocs2;
CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
ArgLocs2, *DAG.getContext());
if (UseBoth)
CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true));
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
// Keep stack frames 16-byte aligned.
ArgsSize = alignTo(ArgsSize, 16);
// Adjust the stack pointer to make room for the arguments.
// FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
// with more than 6 arguments.
Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
// Collect the set of registers to pass to the function and their values.
// This will be emitted as a sequence of CopyToReg nodes glued to the call
// instruction.
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
// Collect chains from all the memory opeations that copy arguments to the
// stack. They must follow the stack pointer adjustment above and precede the
// call instruction itself.
SmallVector<SDValue, 8> MemOpChains;
// VE needs to get address of callee function in a register
// So, prepare to copy it to SX12 here.
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
SDValue Callee = CLI.Callee;
bool IsPICCall = isPositionIndependent();
// PC-relative references to external symbols should go through $stub.
// If so, we need to prepare GlobalBaseReg first.
const TargetMachine &TM = DAG.getTarget();
const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
const GlobalValue *GV = nullptr;
auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee);
if (CalleeG)
GV = CalleeG->getGlobal();
bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
bool UsePlt = !Local;
MachineFunction &MF = DAG.getMachineFunction();
// Turn GlobalAddress/ExternalSymbol node into a value node
// containing the address of them here.
if (CalleeG) {
if (IsPICCall) {
if (UsePlt)
Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
} else {
Callee =
makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
}
} else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
if (IsPICCall) {
if (UsePlt)
Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
} else {
Callee =
makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
}
}
RegsToPass.push_back(std::make_pair(VE::SX12, Callee));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = CLI.OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown location info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt: {
// Convert a float argument to i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Undef = SDValue(
DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
MVT::i64, Undef, Arg, Sub_f32),
0);
break;
}
}
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
if (!UseBoth)
continue;
VA = ArgLocs2[i];
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT);
// The argument area starts at %fp/%sp + the size of reserved area.
SDValue PtrOff =
DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL);
PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
}
// Emit all stores, make sure they occur before the call.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of CopyToReg nodes glued together with token chain and
// glue operands which copy the outgoing args into registers. The InGlue is
// necessary since all emitted instructions must be stuck together in order
// to pass the live physical registers.
SDValue InGlue;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
RegsToPass[i].second, InGlue);
InGlue = Chain.getValue(1);
}
// Build the operands for the call instruction itself.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const VERegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *Mask =
TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Make sure the CopyToReg nodes are glued to the call instruction which
// consumes the registers.
if (InGlue.getNode())
Ops.push_back(InGlue);
// Now the call itself.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops);
InGlue = Chain.getValue(1);
// Revert the stack pointer immediately after the call.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
InGlue = Chain.getValue(1);
// Now extract the return values. This is more or less the same as
// LowerFormalArguments.
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Set inreg flag manually for codegen generated library calls that
// return float.
if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
CLI.Ins[0].Flags.setInReg();
RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv));
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(!VA.needsCustom() && "Unexpected custom lowering");
Register Reg = VA.getLocReg();
// When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
// reside in the same register in the high and low bits. Reuse the
// CopyFromReg previous node to avoid duplicate copies.
SDValue RV;
if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
RV = Chain.getValue(0);
// But usually we'll create a new CopyFromReg for a different register.
if (!RV.getNode()) {
RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
Chain = RV.getValue(1);
InGlue = Chain.getValue(2);
}
// The callee promoted the return value, so insert an Assert?ext SDNode so
// we won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::BCvt: {
// Extract a float return value from i64 with padding.
// 63 31 0
// +------+------+
// | float| 0 |
// +------+------+
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT() == MVT::f32);
SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32);
RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
MVT::f32, RV, Sub_f32),
0);
break;
}
default:
break;
}
// Truncate the register down to the return value type.
if (VA.isExtInLoc())
RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
InVals.push_back(RV);
}
return Chain;
}
bool VETargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// VE uses 64 bit addressing, so we need multiple instructions to generate
// an address. Folding address with offset increases the number of
// instructions, so that we disable it here. Offsets will be folded in
// the DAG combine later if it worth to do so.
return false;
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
return VT == MVT::f32 || VT == MVT::f64;
}
/// Determine if the target supports unaligned memory accesses.
///
/// This function returns true if the target allows unaligned memory accesses
/// of the specified type in the given address space. If true, it also returns
/// whether the unaligned memory access is "fast" in the last argument by
/// reference. This is used, for example, in situations where an array
/// copy/move/set is converted to a sequence of store operations. Its use
/// helps to ensure that such replacements don't generate code that causes an
/// alignment error (trap) on the target machine.
bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
Align A,
MachineMemOperand::Flags,
bool *Fast) const {
if (Fast) {
// It's fast anytime on VE
*Fast = true;
}
return true;
}
VETargetLowering::VETargetLowering(const TargetMachine &TM,
const VESubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
// Instructions which use registers as conditionals examine all the
// bits (as does the pseudo SELECT_CC expansion). I don't think it
// matters much whether it's ZeroOrOneBooleanContent, or
// ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
// former.
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent);
initRegisterClasses();
initSPUActions();
initVPUActions();
setStackPointerRegisterToSaveRestore(VE::SX11);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::TRUNCATE);
// Set function alignment to 16 bytes
setMinFunctionAlignment(Align(16));
// VE stores all argument by 8 bytes alignment
setMinStackArgumentAlignment(Align(8));
computeRegisterProperties(Subtarget->getRegisterInfo());
}
const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const {
#define TARGET_NODE_CASE(NAME) \
case VEISD::NAME: \
return "VEISD::" #NAME;
switch ((VEISD::NodeType)Opcode) {
case VEISD::FIRST_NUMBER:
break;
TARGET_NODE_CASE(CALL)
TARGET_NODE_CASE(EH_SJLJ_LONGJMP)
TARGET_NODE_CASE(EH_SJLJ_SETJMP)
TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH)
TARGET_NODE_CASE(GETFUNPLT)
TARGET_NODE_CASE(GETSTACKTOP)
TARGET_NODE_CASE(GETTLSADDR)
TARGET_NODE_CASE(GLOBAL_BASE_REG)
TARGET_NODE_CASE(Hi)
TARGET_NODE_CASE(Lo)
TARGET_NODE_CASE(MEMBARRIER)
TARGET_NODE_CASE(RET_FLAG)
TARGET_NODE_CASE(TS1AM)
TARGET_NODE_CASE(VEC_BROADCAST)
TARGET_NODE_CASE(REPL_I32)
TARGET_NODE_CASE(REPL_F32)
TARGET_NODE_CASE(LEGALAVL)
// Register the VVP_* SDNodes.
#define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME)
#include "VVPNodes.def"
}
#undef TARGET_NODE_CASE
return nullptr;
}
EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
EVT VT) const {
return MVT::i32;
}
// Convert to a target node and set target flags.
SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF,
SelectionDAG &DAG) const {
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA),
GA->getValueType(0), GA->getOffset(), TF);
if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(),
0, TF);
if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
CP->getAlign(), CP->getOffset(), TF);
if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0),
TF);
if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op))
return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF);
llvm_unreachable("Unhandled address SDNode");
}
// Split Op into high and low parts according to HiTF and LoTF.
// Return an ADD node combining the parts.
SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
// or ExternalSymbol SDNode.
SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT PtrVT = Op.getValueType();
// Handle PIC mode first. VE needs a got load for every variable!
if (isPositionIndependent()) {
auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op);
if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) ||
(GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) {
// Create following instructions for local linkage PIC code.
// lea %reg, label@gotoff_lo
// and %reg, %reg, (32)0
// lea.sl %reg, label@gotoff_hi(%reg, %got)
SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32,
VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
}
// Create following instructions for not local linkage PIC code.
// lea %reg, label@got_lo
// and %reg, %reg, (32)0
// lea.sl %reg, label@got_hi(%reg)
// ld %reg, (%reg, %got)
SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32,
VEMCExpr::VK_VE_GOT_LO32, DAG);
SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
// This is one of the absolute code models.
switch (getTargetMachine().getCodeModel()) {
default:
llvm_unreachable("Unsupported absolute code model");
case CodeModel::Small:
case CodeModel::Medium:
case CodeModel::Large:
// abs64.
return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
}
}