forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdot-product.cpp
220 lines (209 loc) · 8.81 KB
/
dot-product.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//===-- runtime/dot-product.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "terminator.h"
#include "tools.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include "flang/Runtime/reduction.h"
#include <cinttypes>
namespace Fortran::runtime {
// Beware: DOT_PRODUCT of COMPLEX data uses the complex conjugate of the first
// argument; MATMUL does not.
// General accumulator for any type and stride; this is not used for
// contiguous numeric vectors.
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
class Accumulator {
public:
using Result = AccumulationType<RCAT, RKIND>;
Accumulator(const Descriptor &x, const Descriptor &y) : x_{x}, y_{y} {}
void AccumulateIndexed(SubscriptValue xAt, SubscriptValue yAt) {
if constexpr (RCAT == TypeCategory::Logical) {
sum_ = sum_ ||
(IsLogicalElementTrue(x_, &xAt) && IsLogicalElementTrue(y_, &yAt));
} else {
const XT &xElement{*x_.Element<XT>(&xAt)};
const YT &yElement{*y_.Element<YT>(&yAt)};
if constexpr (RCAT == TypeCategory::Complex) {
sum_ += std::conj(static_cast<Result>(xElement)) *
static_cast<Result>(yElement);
} else {
sum_ += static_cast<Result>(xElement) * static_cast<Result>(yElement);
}
}
}
Result GetResult() const { return sum_; }
private:
const Descriptor &x_, &y_;
Result sum_{};
};
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
static inline CppTypeFor<RCAT, RKIND> DoDotProduct(
const Descriptor &x, const Descriptor &y, Terminator &terminator) {
using Result = CppTypeFor<RCAT, RKIND>;
RUNTIME_CHECK(terminator, x.rank() == 1 && y.rank() == 1);
SubscriptValue n{x.GetDimension(0).Extent()};
if (SubscriptValue yN{y.GetDimension(0).Extent()}; yN != n) {
terminator.Crash(
"DOT_PRODUCT: SIZE(VECTOR_A) is %jd but SIZE(VECTOR_B) is %jd",
static_cast<std::intmax_t>(n), static_cast<std::intmax_t>(yN));
}
if constexpr (RCAT != TypeCategory::Logical) {
if (x.GetDimension(0).ByteStride() == sizeof(XT) &&
y.GetDimension(0).ByteStride() == sizeof(YT)) {
// Contiguous numeric vectors
if constexpr (std::is_same_v<XT, YT>) {
// Contiguous homogeneous numeric vectors
if constexpr (std::is_same_v<XT, float>) {
// TODO: call BLAS-1 SDOT or SDSDOT
} else if constexpr (std::is_same_v<XT, double>) {
// TODO: call BLAS-1 DDOT
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-1 CDOTC
} else if constexpr (std::is_same_v<XT, std::complex<double>>) {
// TODO: call BLAS-1 ZDOTC
}
}
XT *xp{x.OffsetElement<XT>(0)};
YT *yp{y.OffsetElement<YT>(0)};
using AccumType = AccumulationType<RCAT, RKIND>;
AccumType accum{};
if constexpr (RCAT == TypeCategory::Complex) {
for (SubscriptValue j{0}; j < n; ++j) {
accum += std::conj(static_cast<AccumType>(*xp++)) *
static_cast<AccumType>(*yp++);
}
} else {
for (SubscriptValue j{0}; j < n; ++j) {
accum +=
static_cast<AccumType>(*xp++) * static_cast<AccumType>(*yp++);
}
}
return static_cast<Result>(accum);
}
}
// Non-contiguous, heterogeneous, & LOGICAL cases
SubscriptValue xAt{x.GetDimension(0).LowerBound()};
SubscriptValue yAt{y.GetDimension(0).LowerBound()};
Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y};
for (SubscriptValue j{0}; j < n; ++j) {
accumulator.AccumulateIndexed(xAt++, yAt++);
}
return static_cast<Result>(accumulator.GetResult());
}
template <TypeCategory RCAT, int RKIND> struct DotProduct {
using Result = CppTypeFor<RCAT, RKIND>;
template <TypeCategory XCAT, int XKIND> struct DP1 {
template <TypeCategory YCAT, int YKIND> struct DP2 {
Result operator()(const Descriptor &x, const Descriptor &y,
Terminator &terminator) const {
if constexpr (constexpr auto resultType{
GetResultType(XCAT, XKIND, YCAT, YKIND)}) {
if constexpr (resultType->first == RCAT &&
(resultType->second <= RKIND || RCAT == TypeCategory::Logical)) {
return DoDotProduct<RCAT, RKIND, CppTypeFor<XCAT, XKIND>,
CppTypeFor<YCAT, YKIND>>(x, y, terminator);
}
}
terminator.Crash(
"DOT_PRODUCT(%d(%d)): bad operand types (%d(%d), %d(%d))",
static_cast<int>(RCAT), RKIND, static_cast<int>(XCAT), XKIND,
static_cast<int>(YCAT), YKIND);
}
};
Result operator()(const Descriptor &x, const Descriptor &y,
Terminator &terminator, TypeCategory yCat, int yKind) const {
return ApplyType<DP2, Result>(yCat, yKind, terminator, x, y, terminator);
}
};
Result operator()(const Descriptor &x, const Descriptor &y,
const char *source, int line) const {
Terminator terminator{source, line};
if (RCAT != TypeCategory::Logical && x.type() == y.type()) {
// No conversions needed, operands and result have same known type
return typename DP1<RCAT, RKIND>::template DP2<RCAT, RKIND>{}(
x, y, terminator);
} else {
auto xCatKind{x.type().GetCategoryAndKind()};
auto yCatKind{y.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value());
return ApplyType<DP1, Result>(xCatKind->first, xCatKind->second,
terminator, x, y, terminator, yCatKind->first, yCatKind->second);
}
}
};
extern "C" {
std::int8_t RTNAME(DotProductInteger1)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Integer, 1>{}(x, y, source, line);
}
std::int16_t RTNAME(DotProductInteger2)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Integer, 2>{}(x, y, source, line);
}
std::int32_t RTNAME(DotProductInteger4)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Integer, 4>{}(x, y, source, line);
}
std::int64_t RTNAME(DotProductInteger8)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Integer, 8>{}(x, y, source, line);
}
#ifdef __SIZEOF_INT128__
common::int128_t RTNAME(DotProductInteger16)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Integer, 16>{}(x, y, source, line);
}
#endif
// TODO: REAL/COMPLEX(2 & 3)
// Intermediate results and operations are at least 64 bits
float RTNAME(DotProductReal4)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Real, 4>{}(x, y, source, line);
}
double RTNAME(DotProductReal8)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Real, 8>{}(x, y, source, line);
}
#if LONG_DOUBLE == 80
long double RTNAME(DotProductReal10)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Real, 10>{}(x, y, source, line);
}
#elif LONG_DOUBLE == 128
long double RTNAME(DotProductReal16)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Real, 16>{}(x, y, source, line);
}
#endif
void RTNAME(CppDotProductComplex4)(std::complex<float> &result,
const Descriptor &x, const Descriptor &y, const char *source, int line) {
auto z{DotProduct<TypeCategory::Complex, 4>{}(x, y, source, line)};
result = std::complex<float>{
static_cast<float>(z.real()), static_cast<float>(z.imag())};
}
void RTNAME(CppDotProductComplex8)(std::complex<double> &result,
const Descriptor &x, const Descriptor &y, const char *source, int line) {
result = DotProduct<TypeCategory::Complex, 8>{}(x, y, source, line);
}
#if LONG_DOUBLE == 80
void RTNAME(CppDotProductComplex10)(std::complex<long double> &result,
const Descriptor &x, const Descriptor &y, const char *source, int line) {
result = DotProduct<TypeCategory::Complex, 10>{}(x, y, source, line);
}
#elif LONG_DOUBLE == 128
void RTNAME(CppDotProductComplex16)(std::complex<long double> &result,
const Descriptor &x, const Descriptor &y, const char *source, int line) {
result = DotProduct<TypeCategory::Complex, 16>{}(x, y, source, line);
}
#endif
bool RTNAME(DotProductLogical)(
const Descriptor &x, const Descriptor &y, const char *source, int line) {
return DotProduct<TypeCategory::Logical, 1>{}(x, y, source, line);
}
} // extern "C"
} // namespace Fortran::runtime