forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassign.cpp
285 lines (278 loc) · 11.6 KB
/
assign.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//===-- runtime/assign.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/assign.h"
#include "derived.h"
#include "stat.h"
#include "terminator.h"
#include "type-info.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
static void DoScalarDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::SpecialBinding &special) {
bool toIsDesc{special.IsArgDescriptor(0)};
bool fromIsDesc{special.IsArgDescriptor(1)};
if (toIsDesc) {
if (fromIsDesc) {
auto *p{
special.GetProc<void (*)(const Descriptor &, const Descriptor &)>()};
p(to, from);
} else {
auto *p{special.GetProc<void (*)(const Descriptor &, void *)>()};
p(to, from.raw().base_addr);
}
} else {
if (fromIsDesc) {
auto *p{special.GetProc<void (*)(void *, const Descriptor &)>()};
p(to.raw().base_addr, from);
} else {
auto *p{special.GetProc<void (*)(void *, void *)>()};
p(to.raw().base_addr, from.raw().base_addr);
}
}
}
static void DoElementalDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::SpecialBinding &special,
std::size_t toElements, SubscriptValue toAt[], SubscriptValue fromAt[]) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc[2];
Descriptor &toElementDesc{statDesc[0].descriptor()};
Descriptor &fromElementDesc{statDesc[1].descriptor()};
toElementDesc = to;
toElementDesc.raw().attribute = CFI_attribute_pointer;
toElementDesc.raw().rank = 0;
fromElementDesc = from;
fromElementDesc.raw().attribute = CFI_attribute_pointer;
fromElementDesc.raw().rank = 0;
for (std::size_t j{0}; j < toElements;
++j, to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
toElementDesc.set_base_addr(to.Element<char>(toAt));
fromElementDesc.set_base_addr(from.Element<char>(fromAt));
DoScalarDefinedAssignment(toElementDesc, fromElementDesc, special);
}
}
void Assign(Descriptor &to, const Descriptor &from, Terminator &terminator) {
DescriptorAddendum *toAddendum{to.Addendum()};
const typeInfo::DerivedType *toDerived{
toAddendum ? toAddendum->derivedType() : nullptr};
const DescriptorAddendum *fromAddendum{from.Addendum()};
const typeInfo::DerivedType *fromDerived{
fromAddendum ? fromAddendum->derivedType() : nullptr};
bool wasJustAllocated{false};
if (to.IsAllocatable()) {
std::size_t lenParms{fromDerived ? fromDerived->LenParameters() : 0};
if (to.IsAllocated()) {
// Top-level assignments to allocatable variables (*not* components)
// may first deallocate existing content if there's about to be a
// change in type or shape; see F'2018 10.2.1.3(3).
bool deallocate{false};
if (to.type() != from.type()) {
deallocate = true;
} else if (toDerived != fromDerived) {
deallocate = true;
} else {
if (toAddendum) {
// Distinct LEN parameters? Deallocate
for (std::size_t j{0}; j < lenParms; ++j) {
if (toAddendum->LenParameterValue(j) !=
fromAddendum->LenParameterValue(j)) {
deallocate = true;
break;
}
}
}
if (from.rank() > 0) {
// Distinct shape? Deallocate
int rank{to.rank()};
for (int j{0}; j < rank; ++j) {
if (to.GetDimension(j).Extent() != from.GetDimension(j).Extent()) {
deallocate = true;
break;
}
}
}
}
if (deallocate) {
to.Destroy(true /*finalize*/);
}
} else if (to.rank() != from.rank()) {
terminator.Crash("Assign: mismatched ranks (%d != %d) in assignment to "
"unallocated allocatable",
to.rank(), from.rank());
}
if (!to.IsAllocated()) {
to.raw().type = from.raw().type;
to.raw().elem_len = from.ElementBytes();
if (toAddendum) {
toDerived = fromDerived;
toAddendum->set_derivedType(toDerived);
for (std::size_t j{0}; j < lenParms; ++j) {
toAddendum->SetLenParameterValue(
j, fromAddendum->LenParameterValue(j));
}
}
// subtle: leave bounds in place when "from" is scalar (10.2.1.3(3))
int rank{from.rank()};
auto stride{static_cast<SubscriptValue>(to.ElementBytes())};
for (int j{0}; j < rank; ++j) {
auto &toDim{to.GetDimension(j)};
const auto &fromDim{from.GetDimension(j)};
toDim.SetBounds(fromDim.LowerBound(), fromDim.UpperBound());
toDim.SetByteStride(stride);
stride *= toDim.Extent();
}
ReturnError(terminator, to.Allocate());
if (fromDerived && !fromDerived->noInitializationNeeded()) {
ReturnError(terminator, Initialize(to, *toDerived, terminator));
}
wasJustAllocated = true;
}
}
SubscriptValue toAt[maxRank];
to.GetLowerBounds(toAt);
// Scalar expansion of the RHS is implied by using the same empty
// subscript values on each (seemingly) elemental reference into
// "from".
SubscriptValue fromAt[maxRank];
from.GetLowerBounds(fromAt);
std::size_t toElements{to.Elements()};
if (from.rank() > 0 && toElements != from.Elements()) {
terminator.Crash("Assign: mismatching element counts in array assignment "
"(to %zd, from %zd)",
toElements, from.Elements());
}
if (to.type() != from.type()) {
terminator.Crash("Assign: mismatching types (to code %d != from code %d)",
to.type().raw(), from.type().raw());
}
std::size_t elementBytes{to.ElementBytes()};
if (elementBytes != from.ElementBytes()) {
terminator.Crash(
"Assign: mismatching element sizes (to %zd bytes != from %zd bytes)",
elementBytes, from.ElementBytes());
}
if (toDerived) { // Derived type assignment
// Check for defined assignment type-bound procedures (10.2.1.4-5)
if (to.rank() == 0) {
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ScalarAssignment)}) {
return DoScalarDefinedAssignment(to, from, *special);
}
}
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalAssignment)}) {
return DoElementalDefinedAssignment(
to, from, *special, toElements, toAt, fromAt);
}
// Derived type intrinsic assignment, which is componentwise and elementwise
// for all components, including parent components (10.2.1.2-3).
// The target is first finalized if still necessary (7.5.6.3(1))
if (!wasJustAllocated && !toDerived->noFinalizationNeeded()) {
Finalize(to, *toDerived);
}
// Copy the data components (incl. the parent) first.
const Descriptor &componentDesc{toDerived->component()};
std::size_t numComponents{componentDesc.Elements()};
for (std::size_t k{0}; k < numComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(
k)}; // TODO: exploit contiguity here
switch (comp.genre()) {
case typeInfo::Component::Genre::Data:
if (comp.category() == TypeCategory::Derived) {
StaticDescriptor<maxRank, true, 10 /*?*/> statDesc[2];
Descriptor &toCompDesc{statDesc[0].descriptor()};
Descriptor &fromCompDesc{statDesc[1].descriptor()};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
comp.CreatePointerDescriptor(toCompDesc, to, terminator, toAt);
comp.CreatePointerDescriptor(
fromCompDesc, from, terminator, fromAt);
Assign(toCompDesc, fromCompDesc, terminator);
}
} else { // Component has intrinsic type; simply copy raw bytes
std::size_t componentByteSize{comp.SizeInBytes(to)};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + comp.offset(),
from.Element<const char>(fromAt) + comp.offset(),
componentByteSize);
}
}
break;
case typeInfo::Component::Genre::Pointer: {
std::size_t componentByteSize{comp.SizeInBytes(to)};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + comp.offset(),
from.Element<const char>(fromAt) + comp.offset(),
componentByteSize);
}
} break;
case typeInfo::Component::Genre::Allocatable:
case typeInfo::Component::Genre::Automatic:
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
auto *toDesc{reinterpret_cast<Descriptor *>(
to.Element<char>(toAt) + comp.offset())};
const auto *fromDesc{reinterpret_cast<const Descriptor *>(
from.Element<char>(fromAt) + comp.offset())};
if (toDesc->IsAllocatable()) {
if (toDesc->IsAllocated()) {
// Allocatable components of the LHS are unconditionally
// deallocated before assignment (F'2018 10.2.1.3(13)(1)),
// unlike a "top-level" assignment to a variable, where
// deallocation is optional.
// TODO: Consider skipping this step and deferring the
// deallocation to the recursive activation of Assign(),
// which might be able to avoid deallocation/reallocation
// when the existing allocation can be reoccupied.
toDesc->Destroy(false /*already finalized*/);
}
if (!fromDesc->IsAllocated()) {
continue; // F'2018 10.2.1.3(13)(2)
}
}
Assign(*toDesc, *fromDesc, terminator);
}
break;
}
}
// Copy procedure pointer components
const Descriptor &procPtrDesc{toDerived->procPtr()};
std::size_t numProcPtrs{procPtrDesc.Elements()};
for (std::size_t k{0}; k < numProcPtrs; ++k) {
const auto &procPtr{
*procPtrDesc.ZeroBasedIndexedElement<typeInfo::ProcPtrComponent>(k)};
for (std::size_t j{0}; j < toElements; ++j, to.IncrementSubscripts(toAt),
from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + procPtr.offset,
from.Element<const char>(fromAt) + procPtr.offset,
sizeof(typeInfo::ProcedurePointer));
}
}
} else { // intrinsic type, intrinsic assignment
if (to.rank() == from.rank() && to.IsContiguous() && from.IsContiguous()) {
// Everything is contiguous; do a single big copy
std::memmove(
to.raw().base_addr, from.raw().base_addr, toElements * elementBytes);
} else { // elemental copies
for (std::size_t n{toElements}; n-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt), from.Element<const char>(fromAt),
elementBytes);
}
}
}
}
extern "C" {
void RTNAME(Assign)(Descriptor &to, const Descriptor &from,
const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
Assign(to, from, terminator);
}
} // extern "C"
} // namespace Fortran::runtime