forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoltAddressTranslation.cpp
293 lines (250 loc) · 10.6 KB
/
BoltAddressTranslation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Profile/BoltAddressTranslation.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#define DEBUG_TYPE "bolt-bat"
namespace llvm {
namespace bolt {
const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat";
void BoltAddressTranslation::writeEntriesForBB(MapTy &Map,
const BinaryBasicBlock &BB,
uint64_t FuncAddress) {
const uint64_t BBOutputOffset =
BB.getOutputAddressRange().first - FuncAddress;
const uint32_t BBInputOffset = BB.getInputOffset();
assert(BBInputOffset != BinaryBasicBlock::INVALID_OFFSET &&
"Every output BB must track back to an input BB for profile "
"collection in bolted binaries");
LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n");
LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset)
<< " Val: " << Twine::utohexstr(BBInputOffset) << "\n");
// In case of conflicts (same Key mapping to different Vals), the last
// update takes precedence. Of course it is not ideal to have conflicts and
// those happen when we have an empty BB that either contained only
// NOPs or a jump to the next block (successor). Either way, the successor
// and this deleted block will both share the same output address (the same
// key), and we need to map back. We choose here to privilege the successor by
// allowing it to overwrite the previously inserted key in the map.
Map[BBOutputOffset] = BBInputOffset;
for (const auto &IOPair : BB.getOffsetTranslationTable()) {
const uint64_t OutputOffset = IOPair.first + BBOutputOffset;
const uint32_t InputOffset = IOPair.second;
// Is this the first instruction in the BB? No need to duplicate the entry.
if (OutputOffset == BBOutputOffset)
continue;
LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: "
<< Twine::utohexstr(InputOffset) << " (branch)\n");
Map.insert(
std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset | BRANCHENTRY));
}
}
void BoltAddressTranslation::write(raw_ostream &OS) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n");
for (auto &BFI : BC.getBinaryFunctions()) {
BinaryFunction &Function = BFI.second;
// We don't need a translation table if the body of the function hasn't
// changed
if (!BC.HasRelocations && !Function.isSimple())
continue;
LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n");
LLVM_DEBUG(dbgs() << " Address reference: 0x"
<< Twine::utohexstr(Function.getOutputAddress()) << "\n");
MapTy Map;
const bool IsSplit = Function.isSplit();
for (BinaryBasicBlock *&BB : Function.layout()) {
if (IsSplit && BB->isCold())
break;
writeEntriesForBB(Map, *BB, Function.getOutputAddress());
}
Maps.insert(std::pair<uint64_t, MapTy>(Function.getOutputAddress(), Map));
if (!IsSplit)
continue;
// Cold map
Map.clear();
LLVM_DEBUG(dbgs() << " Cold part\n");
for (BinaryBasicBlock *&BB : Function.layout()) {
if (!BB->isCold())
continue;
writeEntriesForBB(Map, *BB, Function.cold().getAddress());
}
Maps.insert(std::pair<uint64_t, MapTy>(Function.cold().getAddress(), Map));
ColdPartSource.insert(std::pair<uint64_t, uint64_t>(
Function.cold().getAddress(), Function.getOutputAddress()));
}
const uint32_t NumFuncs = Maps.size();
OS.write(reinterpret_cast<const char *>(&NumFuncs), 4);
LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << " functions for BAT.\n");
for (auto &MapEntry : Maps) {
const uint64_t Address = MapEntry.first;
MapTy &Map = MapEntry.second;
const uint32_t NumEntries = Map.size();
LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x"
<< Twine::utohexstr(Address) << ".\n");
OS.write(reinterpret_cast<const char *>(&Address), 8);
OS.write(reinterpret_cast<const char *>(&NumEntries), 4);
for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
OS.write(reinterpret_cast<const char *>(&KeyVal.first), 4);
OS.write(reinterpret_cast<const char *>(&KeyVal.second), 4);
}
}
const uint32_t NumColdEntries = ColdPartSource.size();
LLVM_DEBUG(dbgs() << "Writing " << NumColdEntries
<< " cold part mappings.\n");
OS.write(reinterpret_cast<const char *>(&NumColdEntries), 4);
for (std::pair<const uint64_t, uint64_t> &ColdEntry : ColdPartSource) {
OS.write(reinterpret_cast<const char *>(&ColdEntry.first), 8);
OS.write(reinterpret_cast<const char *>(&ColdEntry.second), 8);
LLVM_DEBUG(dbgs() << " " << Twine::utohexstr(ColdEntry.first) << " -> "
<< Twine::utohexstr(ColdEntry.second) << "\n");
}
outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n";
outs() << "BOLT-INFO: Wrote " << NumColdEntries
<< " BAT cold-to-hot entries\n";
}
std::error_code BoltAddressTranslation::parse(StringRef Buf) {
DataExtractor DE = DataExtractor(Buf, true, 8);
uint64_t Offset = 0;
if (Buf.size() < 12)
return make_error_code(llvm::errc::io_error);
const uint32_t NameSz = DE.getU32(&Offset);
const uint32_t DescSz = DE.getU32(&Offset);
const uint32_t Type = DE.getU32(&Offset);
if (Type != BinarySection::NT_BOLT_BAT ||
Buf.size() + Offset < alignTo(NameSz, 4) + DescSz)
return make_error_code(llvm::errc::io_error);
StringRef Name = Buf.slice(Offset, Offset + NameSz);
Offset = alignTo(Offset + NameSz, 4);
if (Name.substr(0, 4) != "BOLT")
return make_error_code(llvm::errc::io_error);
if (Buf.size() - Offset < 4)
return make_error_code(llvm::errc::io_error);
const uint32_t NumFunctions = DE.getU32(&Offset);
LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << " functions\n");
for (uint32_t I = 0; I < NumFunctions; ++I) {
if (Buf.size() - Offset < 12)
return make_error_code(llvm::errc::io_error);
const uint64_t Address = DE.getU64(&Offset);
const uint32_t NumEntries = DE.getU32(&Offset);
MapTy Map;
LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x"
<< Twine::utohexstr(Address) << "\n");
if (Buf.size() - Offset < 8 * NumEntries)
return make_error_code(llvm::errc::io_error);
for (uint32_t J = 0; J < NumEntries; ++J) {
const uint32_t OutputAddr = DE.getU32(&Offset);
const uint32_t InputAddr = DE.getU32(&Offset);
Map.insert(std::pair<uint32_t, uint32_t>(OutputAddr, InputAddr));
LLVM_DEBUG(dbgs() << Twine::utohexstr(OutputAddr) << " -> "
<< Twine::utohexstr(InputAddr) << "\n");
}
Maps.insert(std::pair<uint64_t, MapTy>(Address, Map));
}
if (Buf.size() - Offset < 4)
return make_error_code(llvm::errc::io_error);
const uint32_t NumColdEntries = DE.getU32(&Offset);
LLVM_DEBUG(dbgs() << "Parsing " << NumColdEntries << " cold part mappings\n");
for (uint32_t I = 0; I < NumColdEntries; ++I) {
if (Buf.size() - Offset < 16)
return make_error_code(llvm::errc::io_error);
const uint32_t ColdAddress = DE.getU64(&Offset);
const uint32_t HotAddress = DE.getU64(&Offset);
ColdPartSource.insert(
std::pair<uint64_t, uint64_t>(ColdAddress, HotAddress));
LLVM_DEBUG(dbgs() << Twine::utohexstr(ColdAddress) << " -> "
<< Twine::utohexstr(HotAddress) << "\n");
}
outs() << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n";
outs() << "BOLT-INFO: Parsed " << NumColdEntries
<< " BAT cold-to-hot entries\n";
return std::error_code();
}
uint64_t BoltAddressTranslation::translate(const BinaryFunction &Func,
uint64_t Offset,
bool IsBranchSrc) const {
auto Iter = Maps.find(Func.getAddress());
if (Iter == Maps.end())
return Offset;
const MapTy &Map = Iter->second;
auto KeyVal = Map.upper_bound(Offset);
if (KeyVal == Map.begin())
return Offset;
--KeyVal;
const uint32_t Val = KeyVal->second & ~BRANCHENTRY;
// Branch source addresses are translated to the first instruction of the
// source BB to avoid accounting for modifications BOLT may have made in the
// BB regarding deletion/addition of instructions.
if (IsBranchSrc)
return Val;
return Offset - KeyVal->first + Val;
}
Optional<BoltAddressTranslation::FallthroughListTy>
BoltAddressTranslation::getFallthroughsInTrace(const BinaryFunction &Func,
uint64_t From,
uint64_t To) const {
SmallVector<std::pair<uint64_t, uint64_t>, 16> Res;
// Filter out trivial case
if (From >= To)
return Res;
From -= Func.getAddress();
To -= Func.getAddress();
auto Iter = Maps.find(Func.getAddress());
if (Iter == Maps.end())
return NoneType();
const MapTy &Map = Iter->second;
auto FromIter = Map.upper_bound(From);
if (FromIter == Map.begin())
return Res;
// Skip instruction entries, to create fallthroughs we are only interested in
// BB boundaries
do {
if (FromIter == Map.begin())
return Res;
--FromIter;
} while (FromIter->second & BRANCHENTRY);
auto ToIter = Map.upper_bound(To);
if (ToIter == Map.begin())
return Res;
--ToIter;
if (FromIter->first >= ToIter->first)
return Res;
for (auto Iter = FromIter; Iter != ToIter;) {
const uint32_t Src = Iter->first;
if (Iter->second & BRANCHENTRY) {
++Iter;
continue;
}
++Iter;
while (Iter->second & BRANCHENTRY && Iter != ToIter)
++Iter;
if (Iter->second & BRANCHENTRY)
break;
Res.emplace_back(Src, Iter->first);
}
return Res;
}
uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const {
auto Iter = ColdPartSource.find(Address);
if (Iter == ColdPartSource.end())
return 0;
return Iter->second;
}
bool BoltAddressTranslation::enabledFor(
llvm::object::ELFObjectFileBase *InputFile) const {
for (const SectionRef &Section : InputFile->sections()) {
Expected<StringRef> SectionNameOrErr = Section.getName();
if (Error E = SectionNameOrErr.takeError())
continue;
if (SectionNameOrErr.get() == SECTION_NAME)
return true;
}
return false;
}
} // namespace bolt
} // namespace llvm