forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCF.cpp
486 lines (430 loc) · 16.5 KB
/
MCF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
//===- bolt/Passes/MCF.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions for solving minimum-cost flow problem.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/MCF.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Passes/DataflowInfoManager.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <vector>
#undef DEBUG_TYPE
#define DEBUG_TYPE "mcf"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> TimeOpts;
static cl::opt<bool>
IterativeGuess("iterative-guess",
cl::desc("in non-LBR mode, guess edge counts using iterative technique"),
cl::ZeroOrMore,
cl::init(false),
cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<bool>
EqualizeBBCounts("equalize-bb-counts",
cl::desc("in non-LBR mode, use same count for BBs "
"that should have equivalent count"),
cl::ZeroOrMore,
cl::init(false),
cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<bool>
UseRArcs("mcf-use-rarcs",
cl::desc("in MCF, consider the possibility of cancelling flow to balance "
"edges"),
cl::ZeroOrMore,
cl::init(false),
cl::Hidden,
cl::cat(BoltOptCategory));
} // namespace opts
namespace llvm {
namespace bolt {
namespace {
// Edge Weight Inference Heuristic
//
// We start by maintaining the invariant used in LBR mode where the sum of
// pred edges count is equal to the block execution count. This loop will set
// pred edges count by balancing its own execution count in different pred
// edges. The weight of each edge is guessed by looking at how hot each pred
// block is (in terms of samples).
// There are two caveats in this approach. One is for critical edges and the
// other is for self-referencing blocks (loops of 1 BB). For critical edges,
// we can't infer the hotness of them based solely on pred BBs execution
// count. For each critical edge we look at the pred BB, then look at its
// succs to adjust its weight.
//
// [ 60 ] [ 25 ]
// | \ |
// [ 10 ] [ 75 ]
//
// The illustration above shows a critical edge \. We wish to adjust bb count
// 60 to 50 to properly determine the weight of the critical edge to be
// 50 / 75.
// For self-referencing edges, we attribute its weight by subtracting the
// current BB execution count by the sum of predecessors count if this result
// is non-negative.
using EdgeWeightMap =
DenseMap<std::pair<const BinaryBasicBlock *, const BinaryBasicBlock *>,
double>;
template <class NodeT>
void updateEdgeWeight(EdgeWeightMap &EdgeWeights, const BinaryBasicBlock *A,
const BinaryBasicBlock *B, double Weight);
template <>
void updateEdgeWeight<BinaryBasicBlock *>(EdgeWeightMap &EdgeWeights,
const BinaryBasicBlock *A,
const BinaryBasicBlock *B,
double Weight) {
EdgeWeights[std::make_pair(A, B)] = Weight;
return;
}
template <>
void updateEdgeWeight<Inverse<BinaryBasicBlock *>>(EdgeWeightMap &EdgeWeights,
const BinaryBasicBlock *A,
const BinaryBasicBlock *B,
double Weight) {
EdgeWeights[std::make_pair(B, A)] = Weight;
return;
}
template <class NodeT>
void computeEdgeWeights(BinaryBasicBlock *BB, EdgeWeightMap &EdgeWeights) {
typedef GraphTraits<NodeT> GraphT;
typedef GraphTraits<Inverse<NodeT>> InvTraits;
double TotalChildrenCount = 0.0;
SmallVector<double, 4> ChildrenExecCount;
// First pass computes total children execution count that directly
// contribute to this BB.
for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB),
E = GraphT::child_end(BB);
CI != E; ++CI) {
typename GraphT::NodeRef Child = *CI;
double ChildExecCount = Child->getExecutionCount();
// Is self-reference?
if (Child == BB) {
ChildExecCount = 0.0; // will fill this in second pass
} else if (GraphT::child_end(BB) - GraphT::child_begin(BB) > 1 &&
InvTraits::child_end(Child) - InvTraits::child_begin(Child) >
1) {
// Handle critical edges. This will cause a skew towards crit edges, but
// it is a quick solution.
double CritWeight = 0.0;
uint64_t Denominator = 0;
for (typename InvTraits::ChildIteratorType
II = InvTraits::child_begin(Child),
IE = InvTraits::child_end(Child);
II != IE; ++II) {
typename GraphT::NodeRef N = *II;
Denominator += N->getExecutionCount();
if (N != BB)
continue;
CritWeight = N->getExecutionCount();
}
if (Denominator)
CritWeight /= static_cast<double>(Denominator);
ChildExecCount *= CritWeight;
}
ChildrenExecCount.push_back(ChildExecCount);
TotalChildrenCount += ChildExecCount;
}
// Second pass fixes the weight of a possible self-reference edge
uint32_t ChildIndex = 0;
for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB),
E = GraphT::child_end(BB);
CI != E; ++CI) {
typename GraphT::NodeRef Child = *CI;
if (Child != BB) {
++ChildIndex;
continue;
}
if (static_cast<double>(BB->getExecutionCount()) > TotalChildrenCount) {
ChildrenExecCount[ChildIndex] =
BB->getExecutionCount() - TotalChildrenCount;
TotalChildrenCount += ChildrenExecCount[ChildIndex];
}
break;
}
// Third pass finally assigns weights to edges
ChildIndex = 0;
for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB),
E = GraphT::child_end(BB);
CI != E; ++CI) {
typename GraphT::NodeRef Child = *CI;
double Weight = 1 / (GraphT::child_end(BB) - GraphT::child_begin(BB));
if (TotalChildrenCount != 0.0)
Weight = ChildrenExecCount[ChildIndex] / TotalChildrenCount;
updateEdgeWeight<NodeT>(EdgeWeights, BB, Child, Weight);
++ChildIndex;
}
}
template <class NodeT>
void computeEdgeWeights(BinaryFunction &BF, EdgeWeightMap &EdgeWeights) {
for (BinaryBasicBlock &BB : BF)
computeEdgeWeights<NodeT>(&BB, EdgeWeights);
}
/// Make BB count match the sum of all incoming edges. If AllEdges is true,
/// make it match max(SumPredEdges, SumSuccEdges).
void recalculateBBCounts(BinaryFunction &BF, bool AllEdges) {
for (BinaryBasicBlock &BB : BF) {
uint64_t TotalPredsEWeight = 0;
for (BinaryBasicBlock *Pred : BB.predecessors())
TotalPredsEWeight += Pred->getBranchInfo(BB).Count;
if (TotalPredsEWeight > BB.getExecutionCount())
BB.setExecutionCount(TotalPredsEWeight);
if (!AllEdges)
continue;
uint64_t TotalSuccsEWeight = 0;
for (BinaryBasicBlock::BinaryBranchInfo &BI : BB.branch_info())
TotalSuccsEWeight += BI.Count;
if (TotalSuccsEWeight > BB.getExecutionCount())
BB.setExecutionCount(TotalSuccsEWeight);
}
}
// This is our main edge count guessing heuristic. Look at predecessors and
// assign a proportionally higher count to pred edges coming from blocks with
// a higher execution count in comparison with the other predecessor blocks,
// making SumPredEdges match the current BB count.
// If "UseSucc" is true, apply the same logic to successor edges as well. Since
// some successor edges may already have assigned a count, only update it if the
// new count is higher.
void guessEdgeByRelHotness(BinaryFunction &BF, bool UseSucc,
EdgeWeightMap &PredEdgeWeights,
EdgeWeightMap &SuccEdgeWeights) {
for (BinaryBasicBlock &BB : BF) {
for (BinaryBasicBlock *Pred : BB.predecessors()) {
double RelativeExec = PredEdgeWeights[std::make_pair(Pred, &BB)];
RelativeExec *= BB.getExecutionCount();
BinaryBasicBlock::BinaryBranchInfo &BI = Pred->getBranchInfo(BB);
if (static_cast<uint64_t>(RelativeExec) > BI.Count)
BI.Count = static_cast<uint64_t>(RelativeExec);
}
if (!UseSucc)
continue;
auto BI = BB.branch_info_begin();
for (BinaryBasicBlock *Succ : BB.successors()) {
double RelativeExec = SuccEdgeWeights[std::make_pair(&BB, Succ)];
RelativeExec *= BB.getExecutionCount();
if (static_cast<uint64_t>(RelativeExec) > BI->Count)
BI->Count = static_cast<uint64_t>(RelativeExec);
++BI;
}
}
}
using ArcSet =
DenseSet<std::pair<const BinaryBasicBlock *, const BinaryBasicBlock *>>;
/// Predecessor edges version of guessEdgeByIterativeApproach. GuessedArcs has
/// all edges we already established their count. Try to guess the count of
/// the remaining edge, if there is only one to guess, and return true if we
/// were able to guess.
bool guessPredEdgeCounts(BinaryBasicBlock *BB, ArcSet &GuessedArcs) {
if (BB->pred_size() == 0)
return false;
uint64_t TotalPredCount = 0;
unsigned NumGuessedEdges = 0;
for (BinaryBasicBlock *Pred : BB->predecessors()) {
if (GuessedArcs.count(std::make_pair(Pred, BB)))
++NumGuessedEdges;
TotalPredCount += Pred->getBranchInfo(*BB).Count;
}
if (NumGuessedEdges != BB->pred_size() - 1)
return false;
int64_t Guessed =
static_cast<int64_t>(BB->getExecutionCount()) - TotalPredCount;
if (Guessed < 0)
Guessed = 0;
for (BinaryBasicBlock *Pred : BB->predecessors()) {
if (GuessedArcs.count(std::make_pair(Pred, BB)))
continue;
Pred->getBranchInfo(*BB).Count = Guessed;
return true;
}
llvm_unreachable("Expected unguessed arc");
}
/// Successor edges version of guessEdgeByIterativeApproach. GuessedArcs has
/// all edges we already established their count. Try to guess the count of
/// the remaining edge, if there is only one to guess, and return true if we
/// were able to guess.
bool guessSuccEdgeCounts(BinaryBasicBlock *BB, ArcSet &GuessedArcs) {
if (BB->succ_size() == 0)
return false;
uint64_t TotalSuccCount = 0;
unsigned NumGuessedEdges = 0;
auto BI = BB->branch_info_begin();
for (BinaryBasicBlock *Succ : BB->successors()) {
if (GuessedArcs.count(std::make_pair(BB, Succ)))
++NumGuessedEdges;
TotalSuccCount += BI->Count;
++BI;
}
if (NumGuessedEdges != BB->succ_size() - 1)
return false;
int64_t Guessed =
static_cast<int64_t>(BB->getExecutionCount()) - TotalSuccCount;
if (Guessed < 0)
Guessed = 0;
BI = BB->branch_info_begin();
for (BinaryBasicBlock *Succ : BB->successors()) {
if (GuessedArcs.count(std::make_pair(BB, Succ))) {
++BI;
continue;
}
BI->Count = Guessed;
GuessedArcs.insert(std::make_pair(BB, Succ));
return true;
}
llvm_unreachable("Expected unguessed arc");
}
/// Guess edge count whenever we have only one edge (pred or succ) left
/// to guess. Then make its count equal to BB count minus all other edge
/// counts we already know their count. Repeat this until there is no
/// change.
void guessEdgeByIterativeApproach(BinaryFunction &BF) {
ArcSet KnownArcs;
bool Changed = false;
do {
Changed = false;
for (BinaryBasicBlock &BB : BF) {
if (guessPredEdgeCounts(&BB, KnownArcs))
Changed = true;
if (guessSuccEdgeCounts(&BB, KnownArcs))
Changed = true;
}
} while (Changed);
// Guess count for non-inferred edges
for (BinaryBasicBlock &BB : BF) {
for (BinaryBasicBlock *Pred : BB.predecessors()) {
if (KnownArcs.count(std::make_pair(Pred, &BB)))
continue;
BinaryBasicBlock::BinaryBranchInfo &BI = Pred->getBranchInfo(BB);
BI.Count =
std::min(Pred->getExecutionCount(), BB.getExecutionCount()) / 2;
KnownArcs.insert(std::make_pair(Pred, &BB));
}
auto BI = BB.branch_info_begin();
for (BinaryBasicBlock *Succ : BB.successors()) {
if (KnownArcs.count(std::make_pair(&BB, Succ))) {
++BI;
continue;
}
BI->Count =
std::min(BB.getExecutionCount(), Succ->getExecutionCount()) / 2;
KnownArcs.insert(std::make_pair(&BB, Succ));
break;
}
}
}
/// Associate each basic block with the BinaryLoop object corresponding to the
/// innermost loop containing this block.
DenseMap<const BinaryBasicBlock *, const BinaryLoop *>
createLoopNestLevelMap(BinaryFunction &BF) {
DenseMap<const BinaryBasicBlock *, const BinaryLoop *> LoopNestLevel;
const BinaryLoopInfo &BLI = BF.getLoopInfo();
for (BinaryBasicBlock &BB : BF)
LoopNestLevel[&BB] = BLI[&BB];
return LoopNestLevel;
}
/// Implement the idea in "SamplePGO - The Power of Profile Guided Optimizations
/// without the Usability Burden" by Diego Novillo to make basic block counts
/// equal if we show that A dominates B, B post-dominates A and they are in the
/// same loop and same loop nesting level.
void equalizeBBCounts(BinaryFunction &BF) {
auto Info = DataflowInfoManager(BF, nullptr, nullptr);
DominatorAnalysis<false> &DA = Info.getDominatorAnalysis();
DominatorAnalysis<true> &PDA = Info.getPostDominatorAnalysis();
auto &InsnToBB = Info.getInsnToBBMap();
// These analyses work at the instruction granularity, but we really only need
// basic block granularity here. So we'll use a set of visited edges to avoid
// revisiting the same BBs again and again.
DenseMap<const BinaryBasicBlock *, std::set<const BinaryBasicBlock *>>
Visited;
// Equivalence classes mapping. Each equivalence class is defined by the set
// of BBs that obeys the aforementioned properties.
DenseMap<const BinaryBasicBlock *, signed> BBsToEC;
std::vector<std::vector<BinaryBasicBlock *>> Classes;
BF.calculateLoopInfo();
DenseMap<const BinaryBasicBlock *, const BinaryLoop *> LoopNestLevel =
createLoopNestLevelMap(BF);
for (BinaryBasicBlock &BB : BF)
BBsToEC[&BB] = -1;
for (BinaryBasicBlock &BB : BF) {
auto I = BB.begin();
if (I == BB.end())
continue;
DA.doForAllDominators(*I, [&](const MCInst &DomInst) {
BinaryBasicBlock *DomBB = InsnToBB[&DomInst];
if (Visited[DomBB].count(&BB))
return;
Visited[DomBB].insert(&BB);
if (!PDA.doesADominateB(*I, DomInst))
return;
if (LoopNestLevel[&BB] != LoopNestLevel[DomBB])
return;
if (BBsToEC[DomBB] == -1 && BBsToEC[&BB] == -1) {
BBsToEC[DomBB] = Classes.size();
BBsToEC[&BB] = Classes.size();
Classes.emplace_back();
Classes.back().push_back(DomBB);
Classes.back().push_back(&BB);
return;
}
if (BBsToEC[DomBB] == -1) {
BBsToEC[DomBB] = BBsToEC[&BB];
Classes[BBsToEC[&BB]].push_back(DomBB);
return;
}
if (BBsToEC[&BB] == -1) {
BBsToEC[&BB] = BBsToEC[DomBB];
Classes[BBsToEC[DomBB]].push_back(&BB);
return;
}
signed BBECNum = BBsToEC[&BB];
std::vector<BinaryBasicBlock *> DomEC = Classes[BBsToEC[DomBB]];
std::vector<BinaryBasicBlock *> BBEC = Classes[BBECNum];
for (BinaryBasicBlock *Block : DomEC) {
BBsToEC[Block] = BBECNum;
BBEC.push_back(Block);
}
DomEC.clear();
});
}
for (std::vector<BinaryBasicBlock *> &Class : Classes) {
uint64_t Max = 0ULL;
for (BinaryBasicBlock *BB : Class)
Max = std::max(Max, BB->getExecutionCount());
for (BinaryBasicBlock *BB : Class)
BB->setExecutionCount(Max);
}
}
} // end anonymous namespace
void estimateEdgeCounts(BinaryFunction &BF) {
EdgeWeightMap PredEdgeWeights;
EdgeWeightMap SuccEdgeWeights;
if (!opts::IterativeGuess) {
computeEdgeWeights<Inverse<BinaryBasicBlock *>>(BF, PredEdgeWeights);
computeEdgeWeights<BinaryBasicBlock *>(BF, SuccEdgeWeights);
}
if (opts::EqualizeBBCounts) {
LLVM_DEBUG(BF.print(dbgs(), "before equalize BB counts", true));
equalizeBBCounts(BF);
LLVM_DEBUG(BF.print(dbgs(), "after equalize BB counts", true));
}
if (opts::IterativeGuess)
guessEdgeByIterativeApproach(BF);
else
guessEdgeByRelHotness(BF, /*UseSuccs=*/false, PredEdgeWeights,
SuccEdgeWeights);
recalculateBBCounts(BF, /*AllEdges=*/false);
}
void solveMCF(BinaryFunction &BF, MCFCostFunction CostFunction) {
llvm_unreachable("not implemented");
}
} // namespace bolt
} // namespace llvm