forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExtTSPReorderAlgorithm.cpp
901 lines (777 loc) · 29.9 KB
/
ExtTSPReorderAlgorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
//===- bolt/Passes/ExtTSPReorderAlgorithm.cpp - Order basic blocks --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ExtTSP - layout of basic blocks with i-cache optimization.
//
// The algorithm is a greedy heuristic that works with chains (ordered lists)
// of basic blocks. Initially all chains are isolated basic blocks. On every
// iteration, we pick a pair of chains whose merging yields the biggest increase
// in the ExtTSP value, which models how i-cache "friendly" a specific chain is.
// A pair of chains giving the maximum gain is merged into a new chain. The
// procedure stops when there is only one chain left, or when merging does not
// increase ExtTSP. In the latter case, the remaining chains are sorted by
// density in decreasing order.
//
// An important aspect is the way two chains are merged. Unlike earlier
// algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two
// chains, X and Y, are first split into three, X1, X2, and Y. Then we
// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
// This improves the quality of the final result (the search space is larger)
// while keeping the implementation sufficiently fast.
//
// Reference:
// * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
// IEEE Transactions on Computers, 2020
// https://arxiv.org/abs/1809.04676
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Passes/ReorderAlgorithm.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> NoThreads;
cl::opt<unsigned>
ChainSplitThreshold("chain-split-threshold",
cl::desc("The maximum size of a chain to apply splitting"),
cl::init(128),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<double>
ForwardWeight("forward-weight",
cl::desc("The weight of forward jumps for ExtTSP value"),
cl::init(0.1),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<double>
BackwardWeight("backward-weight",
cl::desc("The weight of backward jumps for ExtTSP value"),
cl::init(0.1),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<unsigned>
ForwardDistance("forward-distance",
cl::desc("The maximum distance (in bytes) of forward jumps for ExtTSP value"),
cl::init(1024),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<unsigned>
BackwardDistance("backward-distance",
cl::desc("The maximum distance (in bytes) of backward jumps for ExtTSP value"),
cl::init(640),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
}
namespace llvm {
namespace bolt {
// Epsilon for comparison of doubles
constexpr double EPS = 1e-8;
class Block;
class Chain;
class Edge;
// Calculate Ext-TSP value, which quantifies the expected number of i-cache
// misses for a given ordering of basic blocks
double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
uint64_t Count) {
assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
// Fallthrough
if (SrcAddr + SrcSize == DstAddr) {
// Assume that FallthroughWeight = 1.0 after normalization
return static_cast<double>(Count);
}
// Forward
if (SrcAddr + SrcSize < DstAddr) {
const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
if (Dist <= opts::ForwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance;
return opts::ForwardWeight * Prob * Count;
}
return 0;
}
// Backward
const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
if (Dist <= opts::BackwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance;
return opts::BackwardWeight * Prob * Count;
}
return 0;
}
using BlockPair = std::pair<Block *, Block *>;
using JumpList = std::vector<std::pair<BlockPair, uint64_t>>;
using BlockIter = std::vector<Block *>::const_iterator;
enum MergeTypeTy {
X_Y = 0,
X1_Y_X2 = 1,
Y_X2_X1 = 2,
X2_X1_Y = 3,
};
class MergeGainTy {
public:
explicit MergeGainTy() {}
explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
: Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
double score() const { return Score; }
size_t mergeOffset() const { return MergeOffset; }
MergeTypeTy mergeType() const { return MergeType; }
// returns 'true' iff Other is preferred over this
bool operator<(const MergeGainTy &Other) const {
return (Other.Score > EPS && Other.Score > Score + EPS);
}
private:
double Score{-1.0};
size_t MergeOffset{0};
MergeTypeTy MergeType{MergeTypeTy::X_Y};
};
// A node in CFG corresponding to a BinaryBasicBlock.
// The class wraps several mutable fields utilized in the ExtTSP algorithm
class Block {
public:
Block(const Block &) = delete;
Block(Block &&) = default;
Block &operator=(const Block &) = delete;
Block &operator=(Block &&) = default;
// Corresponding basic block
BinaryBasicBlock *BB{nullptr};
// Current chain of the basic block
Chain *CurChain{nullptr};
// (Estimated) size of the block in the binary
uint64_t Size{0};
// Execution count of the block in the binary
uint64_t ExecutionCount{0};
// An original index of the node in CFG
size_t Index{0};
// The index of the block in the current chain
size_t CurIndex{0};
// An offset of the block in the current chain
mutable uint64_t EstimatedAddr{0};
// Fallthrough successor of the node in CFG
Block *FallthroughSucc{nullptr};
// Fallthrough predecessor of the node in CFG
Block *FallthroughPred{nullptr};
// Outgoing jumps from the block
std::vector<std::pair<Block *, uint64_t>> OutJumps;
// Incoming jumps to the block
std::vector<std::pair<Block *, uint64_t>> InJumps;
// Total execution count of incoming jumps
uint64_t InWeight{0};
// Total execution count of outgoing jumps
uint64_t OutWeight{0};
public:
explicit Block(BinaryBasicBlock *BB_, uint64_t Size_)
: BB(BB_), Size(Size_), ExecutionCount(BB_->getKnownExecutionCount()),
Index(BB->getLayoutIndex()) {}
bool adjacent(const Block *Other) const {
return hasOutJump(Other) || hasInJump(Other);
}
bool hasOutJump(const Block *Other) const {
for (std::pair<Block *, uint64_t> Jump : OutJumps) {
if (Jump.first == Other)
return true;
}
return false;
}
bool hasInJump(const Block *Other) const {
for (std::pair<Block *, uint64_t> Jump : InJumps) {
if (Jump.first == Other)
return true;
}
return false;
}
};
// A chain (ordered sequence) of CFG nodes (basic blocks)
class Chain {
public:
Chain(const Chain &) = delete;
Chain(Chain &&) = default;
Chain &operator=(const Chain &) = delete;
Chain &operator=(Chain &&) = default;
explicit Chain(size_t Id, Block *Block)
: Id(Id), IsEntry(Block->Index == 0),
ExecutionCount(Block->ExecutionCount), Size(Block->Size), Score(0),
Blocks(1, Block) {}
size_t id() const { return Id; }
uint64_t size() const { return Size; }
double density() const { return static_cast<double>(ExecutionCount) / Size; }
uint64_t executionCount() const { return ExecutionCount; }
bool isEntryPoint() const { return IsEntry; }
double score() const { return Score; }
void setScore(double NewScore) { Score = NewScore; }
const std::vector<Block *> &blocks() const { return Blocks; }
const std::vector<std::pair<Chain *, Edge *>> &edges() const { return Edges; }
Edge *getEdge(Chain *Other) const {
for (std::pair<Chain *, Edge *> It : Edges)
if (It.first == Other)
return It.second;
return nullptr;
}
void removeEdge(Chain *Other) {
auto It = Edges.begin();
while (It != Edges.end()) {
if (It->first == Other) {
Edges.erase(It);
return;
}
It++;
}
}
void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); }
void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
Blocks = MergedBlocks;
IsEntry |= Other->IsEntry;
ExecutionCount += Other->ExecutionCount;
Size += Other->Size;
// Update block's chains
for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
Blocks[Idx]->CurChain = this;
Blocks[Idx]->CurIndex = Idx;
}
}
void mergeEdges(Chain *Other);
void clear() {
Blocks.clear();
Edges.clear();
}
private:
size_t Id;
bool IsEntry;
uint64_t ExecutionCount;
uint64_t Size;
// Cached ext-tsp score for the chain
double Score;
// Blocks of the chain
std::vector<Block *> Blocks;
// Adjacent chains and corresponding edges (lists of jumps)
std::vector<std::pair<Chain *, Edge *>> Edges;
};
// An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks.
// When blocks are merged into chains, the edges are combined too so that
// there is always at most one edge between a pair of chains
class Edge {
public:
Edge(const Edge &) = delete;
Edge(Edge &&) = default;
Edge &operator=(const Edge &) = delete;
Edge &operator=(Edge &&) = default;
explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC)
: SrcChain(SrcBlock->CurChain), DstChain(DstBlock->CurChain),
Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {}
const JumpList &jumps() const { return Jumps; }
void changeEndpoint(Chain *From, Chain *To) {
if (From == SrcChain)
SrcChain = To;
if (From == DstChain)
DstChain = To;
}
void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) {
Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC);
}
void moveJumps(Edge *Other) {
Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
Other->Jumps.clear();
}
bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
return Src == SrcChain ? CacheValidForward : CacheValidBackward;
}
MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
return Src == SrcChain ? CachedGainForward : CachedGainBackward;
}
void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
if (Src == SrcChain) {
CachedGainForward = MergeGain;
CacheValidForward = true;
} else {
CachedGainBackward = MergeGain;
CacheValidBackward = true;
}
}
void invalidateCache() {
CacheValidForward = false;
CacheValidBackward = false;
}
private:
Chain *SrcChain{nullptr};
Chain *DstChain{nullptr};
// Original jumps in the binary with correspinding execution counts
JumpList Jumps;
// Cached ext-tsp value for merging the pair of chains
// Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
// we store both values here
MergeGainTy CachedGainForward;
MergeGainTy CachedGainBackward;
// Whether the cached value must be recomputed
bool CacheValidForward{false};
bool CacheValidBackward{false};
};
void Chain::mergeEdges(Chain *Other) {
assert(this != Other && "cannot merge a chain with itself");
// Update edges adjacent to chain Other
for (auto EdgeIt : Other->Edges) {
Chain *const DstChain = EdgeIt.first;
Edge *const DstEdge = EdgeIt.second;
Chain *const TargetChain = DstChain == Other ? this : DstChain;
// Find the corresponding edge in the current chain
Edge *curEdge = getEdge(TargetChain);
if (curEdge == nullptr) {
DstEdge->changeEndpoint(Other, this);
this->addEdge(TargetChain, DstEdge);
if (DstChain != this && DstChain != Other)
DstChain->addEdge(this, DstEdge);
} else {
curEdge->moveJumps(DstEdge);
}
// Cleanup leftover edge
if (DstChain != Other)
DstChain->removeEdge(Other);
}
}
// A wrapper around three chains of basic blocks; it is used to avoid extra
// instantiation of the vectors.
class MergedChain {
public:
MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
BlockIter End3 = BlockIter())
: Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
End3(End3) {}
template <typename F> void forEach(const F &Func) const {
for (auto It = Begin1; It != End1; It++)
Func(*It);
for (auto It = Begin2; It != End2; It++)
Func(*It);
for (auto It = Begin3; It != End3; It++)
Func(*It);
}
std::vector<Block *> getBlocks() const {
std::vector<Block *> Result;
Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
std::distance(Begin3, End3));
Result.insert(Result.end(), Begin1, End1);
Result.insert(Result.end(), Begin2, End2);
Result.insert(Result.end(), Begin3, End3);
return Result;
}
const Block *getFirstBlock() const { return *Begin1; }
private:
BlockIter Begin1;
BlockIter End1;
BlockIter Begin2;
BlockIter End2;
BlockIter Begin3;
BlockIter End3;
};
/// Deterministically compare pairs of chains
bool compareChainPairs(const Chain *A1, const Chain *B1, const Chain *A2,
const Chain *B2) {
const uint64_t Samples1 = A1->executionCount() + B1->executionCount();
const uint64_t Samples2 = A2->executionCount() + B2->executionCount();
if (Samples1 != Samples2)
return Samples1 < Samples2;
// Making the order deterministic
if (A1 != A2)
return A1->id() < A2->id();
return B1->id() < B2->id();
}
class ExtTSP {
public:
ExtTSP(const BinaryFunction &BF) : BF(BF) { initialize(); }
/// Run the algorithm and return an ordering of basic block
void run(BinaryFunction::BasicBlockOrderType &Order) {
// Pass 1: Merge blocks with their fallthrough successors
mergeFallthroughs();
// Pass 2: Merge pairs of chains while improving the ExtTSP objective
mergeChainPairs();
// Pass 3: Merge cold blocks to reduce code size
mergeColdChains();
// Collect blocks from all chains
concatChains(Order);
}
private:
/// Initialize algorithm's data structures
void initialize() {
// Create a separate MCCodeEmitter to allow lock-free execution
BinaryContext::IndependentCodeEmitter Emitter;
if (!opts::NoThreads)
Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter();
// Initialize CFG nodes
AllBlocks.reserve(BF.layout_size());
size_t LayoutIndex = 0;
for (BinaryBasicBlock *BB : BF.layout()) {
BB->setLayoutIndex(LayoutIndex++);
uint64_t Size =
std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1);
AllBlocks.emplace_back(BB, Size);
}
// Initialize edges for the blocks and compute their total in/out weights
size_t NumEdges = 0;
for (Block &Block : AllBlocks) {
auto BI = Block.BB->branch_info_begin();
for (BinaryBasicBlock *SuccBB : Block.BB->successors()) {
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
"missing profile for a jump");
if (SuccBB != Block.BB && BI->Count > 0) {
class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()];
uint64_t Count = BI->Count;
SuccBlock.InWeight += Count;
SuccBlock.InJumps.emplace_back(&Block, Count);
Block.OutWeight += Count;
Block.OutJumps.emplace_back(&SuccBlock, Count);
NumEdges++;
}
++BI;
}
}
// Initialize execution count for every basic block, which is the
// maximum over the sums of all in and out edge weights.
// Also execution count of the entry point is set to at least 1
for (Block &Block : AllBlocks) {
size_t Index = Block.Index;
Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight);
Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight);
if (Index == 0 && Block.ExecutionCount == 0)
Block.ExecutionCount = 1;
}
// Initialize chains
AllChains.reserve(BF.layout_size());
HotChains.reserve(BF.layout_size());
for (Block &Block : AllBlocks) {
AllChains.emplace_back(Block.Index, &Block);
Block.CurChain = &AllChains.back();
if (Block.ExecutionCount > 0)
HotChains.push_back(&AllChains.back());
}
// Initialize edges
AllEdges.reserve(NumEdges);
for (Block &Block : AllBlocks) {
for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) {
class Block *const SuccBlock = Jump.first;
Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
// this edge is already present in the graph
if (CurEdge != nullptr) {
assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
CurEdge->appendJump(&Block, SuccBlock, Jump.second);
continue;
}
// this is a new edge
AllEdges.emplace_back(&Block, SuccBlock, Jump.second);
Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
}
}
assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges");
}
/// For a pair of blocks, A and B, block B is the fallthrough successor of A,
/// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
/// to B are from A. Such blocks should be adjacent in an optimal ordering;
/// the method finds and merges such pairs of blocks
void mergeFallthroughs() {
// Find fallthroughs based on edge weights
for (Block &Block : AllBlocks) {
if (Block.BB->succ_size() == 1 &&
Block.BB->getSuccessor()->pred_size() == 1 &&
Block.BB->getSuccessor()->getLayoutIndex() != 0) {
size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex();
Block.FallthroughSucc = &AllBlocks[SuccIndex];
AllBlocks[SuccIndex].FallthroughPred = &Block;
continue;
}
if (Block.OutWeight == 0)
continue;
for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) {
class Block *const SuccBlock = Edge.first;
// Successor cannot be the first BB, which is pinned
if (Block.OutWeight == Edge.second &&
SuccBlock->InWeight == Edge.second && SuccBlock->Index != 0) {
Block.FallthroughSucc = SuccBlock;
SuccBlock->FallthroughPred = &Block;
break;
}
}
}
// There might be 'cycles' in the fallthrough dependencies (since profile
// data isn't 100% accurate).
// Break the cycles by choosing the block with smallest index as the tail
for (Block &Block : AllBlocks) {
if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr)
continue;
class Block *SuccBlock = Block.FallthroughSucc;
while (SuccBlock != nullptr && SuccBlock != &Block)
SuccBlock = SuccBlock->FallthroughSucc;
if (SuccBlock == nullptr)
continue;
// break the cycle
AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr;
Block.FallthroughPred = nullptr;
}
// Merge blocks with their fallthrough successors
for (Block &Block : AllBlocks) {
if (Block.FallthroughPred == nullptr &&
Block.FallthroughSucc != nullptr) {
class Block *CurBlock = &Block;
while (CurBlock->FallthroughSucc != nullptr) {
class Block *const NextBlock = CurBlock->FallthroughSucc;
mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
CurBlock = NextBlock;
}
}
}
}
/// Merge pairs of chains while improving the ExtTSP objective
void mergeChainPairs() {
while (HotChains.size() > 1) {
Chain *BestChainPred = nullptr;
Chain *BestChainSucc = nullptr;
auto BestGain = MergeGainTy();
// Iterate over all pairs of chains
for (Chain *ChainPred : HotChains) {
// Get candidates for merging with the current chain
for (auto EdgeIter : ChainPred->edges()) {
Chain *ChainSucc = EdgeIter.first;
Edge *ChainEdge = EdgeIter.second;
// Ignore loop edges
if (ChainPred == ChainSucc)
continue;
// Compute the gain of merging the two chains
MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge);
if (CurGain.score() <= EPS)
continue;
if (BestGain < CurGain ||
(std::abs(CurGain.score() - BestGain.score()) < EPS &&
compareChainPairs(ChainPred, ChainSucc, BestChainPred,
BestChainSucc))) {
BestGain = CurGain;
BestChainPred = ChainPred;
BestChainSucc = ChainSucc;
}
}
}
// Stop merging when there is no improvement
if (BestGain.score() <= EPS)
break;
// Merge the best pair of chains
mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
BestGain.mergeType());
}
}
/// Merge cold blocks to reduce code size
void mergeColdChains() {
for (BinaryBasicBlock *SrcBB : BF.layout()) {
// Iterating in reverse order to make sure original fallthrough jumps are
// merged first
for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) {
BinaryBasicBlock *DstBB = *Itr;
size_t SrcIndex = SrcBB->getLayoutIndex();
size_t DstIndex = DstBB->getLayoutIndex();
Chain *SrcChain = AllBlocks[SrcIndex].CurChain;
Chain *DstChain = AllBlocks[DstIndex].CurChain;
if (SrcChain != DstChain && !DstChain->isEntryPoint() &&
SrcChain->blocks().back()->Index == SrcIndex &&
DstChain->blocks().front()->Index == DstIndex)
mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
}
}
}
/// Compute ExtTSP score for a given order of basic blocks
double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const {
if (Jumps.empty())
return 0.0;
uint64_t CurAddr = 0;
MergedBlocks.forEach(
[&](const Block *BB) {
BB->EstimatedAddr = CurAddr;
CurAddr += BB->Size;
}
);
double Score = 0;
for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) {
const Block *SrcBlock = Jump.first.first;
const Block *DstBlock = Jump.first.second;
Score += extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
DstBlock->EstimatedAddr, Jump.second);
}
return Score;
}
/// Compute the gain of merging two chains
///
/// The function considers all possible ways of merging two chains and
/// computes the one having the largest increase in ExtTSP objective. The
/// result is a pair with the first element being the gain and the second
/// element being the corresponding merging type.
MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
return Edge->getCachedMergeGain(ChainPred, ChainSucc);
// Precompute jumps between ChainPred and ChainSucc
JumpList Jumps = Edge->jumps();
class Edge *EdgePP = ChainPred->getEdge(ChainPred);
if (EdgePP != nullptr)
Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
assert(Jumps.size() > 0 && "trying to merge chains w/o jumps");
MergeGainTy Gain = MergeGainTy();
// Try to concatenate two chains w/o splitting
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, 0,
MergeTypeTy::X_Y);
// Try to break ChainPred in various ways and concatenate with ChainSucc
if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) {
for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
Block *BB1 = ChainPred->blocks()[Offset - 1];
Block *BB2 = ChainPred->blocks()[Offset];
// Does the splitting break FT successors?
if (BB1->FallthroughSucc != nullptr) {
(void)BB2;
assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved");
continue;
}
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
MergeTypeTy::X1_Y_X2);
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
MergeTypeTy::Y_X2_X1);
Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
MergeTypeTy::X2_X1_Y);
}
}
Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
return Gain;
}
/// Merge two chains and update the best Gain
MergeGainTy computeMergeGain(const MergeGainTy &CurGain,
const Chain *ChainPred, const Chain *ChainSucc,
const JumpList &Jumps, size_t MergeOffset,
MergeTypeTy MergeType) const {
MergedChain MergedBlocks = mergeBlocks(
ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType);
// Do not allow a merge that does not preserve the original entry block
if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) &&
MergedBlocks.getFirstBlock()->Index != 0)
return CurGain;
// The gain for the new chain
const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score();
auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType);
return CurGain < NewGain ? NewGain : CurGain;
}
/// Merge two chains of blocks respecting a given merge 'type' and 'offset'
///
/// If MergeType == 0, then the result is a concatentation of two chains.
/// Otherwise, the first chain is cut into two sub-chains at the offset,
/// and merged using all possible ways of concatenating three chains.
MergedChain mergeBlocks(const std::vector<Block *> &X,
const std::vector<Block *> &Y, size_t MergeOffset,
MergeTypeTy MergeType) const {
// Split the first chain, X, into X1 and X2
BlockIter BeginX1 = X.begin();
BlockIter EndX1 = X.begin() + MergeOffset;
BlockIter BeginX2 = X.begin() + MergeOffset;
BlockIter EndX2 = X.end();
BlockIter BeginY = Y.begin();
BlockIter EndY = Y.end();
// Construct a new chain from the three existing ones
switch (MergeType) {
case MergeTypeTy::X_Y:
return MergedChain(BeginX1, EndX2, BeginY, EndY);
case MergeTypeTy::X1_Y_X2:
return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
case MergeTypeTy::Y_X2_X1:
return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
case MergeTypeTy::X2_X1_Y:
return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
}
llvm_unreachable("unexpected merge type");
}
/// Merge chain From into chain Into, update the list of active chains,
/// adjacency information, and the corresponding cached values
void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
MergeTypeTy MergeType) {
assert(Into != From && "a chain cannot be merged with itself");
// Merge the blocks
MergedChain MergedBlocks =
mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
Into->merge(From, MergedBlocks.getBlocks());
Into->mergeEdges(From);
From->clear();
// Update cached ext-tsp score for the new chain
Edge *SelfEdge = Into->getEdge(Into);
if (SelfEdge != nullptr) {
MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
Into->setScore(score(MergedBlocks, SelfEdge->jumps()));
}
// Remove chain From from the list of active chains
auto Iter = std::remove(HotChains.begin(), HotChains.end(), From);
HotChains.erase(Iter, HotChains.end());
// Invalidate caches
for (std::pair<Chain *, Edge *> EdgeIter : Into->edges())
EdgeIter.second->invalidateCache();
}
/// Concatenate all chains into a final order
void concatChains(BinaryFunction::BasicBlockOrderType &Order) {
// Collect chains
std::vector<Chain *> SortedChains;
for (Chain &Chain : AllChains)
if (Chain.blocks().size() > 0)
SortedChains.push_back(&Chain);
// Sorting chains by density in decreasing order
std::stable_sort(
SortedChains.begin(), SortedChains.end(),
[](const Chain *C1, const Chain *C2) {
// Original entry point to the front
if (C1->isEntryPoint() != C2->isEntryPoint()) {
if (C1->isEntryPoint())
return true;
if (C2->isEntryPoint())
return false;
}
const double D1 = C1->density();
const double D2 = C2->density();
if (D1 != D2)
return D1 > D2;
// Making the order deterministic
return C1->id() < C2->id();
}
);
// Collect the basic blocks in the order specified by their chains
Order.reserve(BF.layout_size());
for (Chain *Chain : SortedChains)
for (Block *Block : Chain->blocks())
Order.push_back(Block->BB);
}
private:
// The binary function
const BinaryFunction &BF;
// All CFG nodes (basic blocks)
std::vector<Block> AllBlocks;
// All chains of blocks
std::vector<Chain> AllChains;
// Active chains. The vector gets updated at runtime when chains are merged
std::vector<Chain *> HotChains;
// All edges between chains
std::vector<Edge> AllEdges;
};
void ExtTSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF,
BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Do not change layout of functions w/o profile information
if (!BF.hasValidProfile() || BF.layout_size() <= 2) {
for (BinaryBasicBlock *BB : BF.layout())
Order.push_back(BB);
return;
}
// Apply the algorithm
ExtTSP(BF).run(Order);
// Verify correctness
assert(Order[0]->isEntryPoint() && "Original entry point is not preserved");
assert(Order.size() == BF.layout_size() && "Wrong size of reordered layout");
}
} // namespace bolt
} // namespace llvm