forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBasicAliasAnalysis.cpp
1640 lines (1421 loc) · 65.6 KB
/
BasicAliasAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#define DEBUG_TYPE "basicaa"
using namespace llvm;
/// Enable analysis of recursive PHI nodes.
static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
cl::init(false));
/// SearchLimitReached / SearchTimes shows how often the limit of
/// to decompose GEPs is reached. It will affect the precision
/// of basic alias analysis.
STATISTIC(SearchLimitReached, "Number of times the limit to "
"decompose GEPs is reached");
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
/// Cutoff after which to stop analysing a set of phi nodes potentially involved
/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
/// careful with value equivalence. We use reachability to make sure a value
/// cannot be involved in a cycle.
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
// The max limit of the search depth in DecomposeGEPExpression() and
// GetUnderlyingObject(), both functions need to use the same search
// depth otherwise the algorithm in aliasGEP will assert.
static const unsigned MaxLookupSearchDepth = 6;
//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//
/// Returns true if the pointer is to a function-local object that never
/// escapes from the function.
static bool isNonEscapingLocalObject(const Value *V) {
// If this is a local allocation, check to see if it escapes.
if (isa<AllocaInst>(V) || isNoAliasCall(V))
// Set StoreCaptures to True so that we can assume in our callers that the
// pointer is not the result of a load instruction. Currently
// PointerMayBeCaptured doesn't have any special analysis for the
// StoreCaptures=false case; if it did, our callers could be refined to be
// more precise.
return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
// If this is an argument that corresponds to a byval or noalias argument,
// then it has not escaped before entering the function. Check if it escapes
// inside the function.
if (const Argument *A = dyn_cast<Argument>(V))
if (A->hasByValAttr() || A->hasNoAliasAttr())
// Note even if the argument is marked nocapture, we still need to check
// for copies made inside the function. The nocapture attribute only
// specifies that there are no copies made that outlive the function.
return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
return false;
}
/// Returns true if the pointer is one which would have been considered an
/// escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
return true;
// The load case works because isNonEscapingLocalObject considers all
// stores to be escapes (it passes true for the StoreCaptures argument
// to PointerMayBeCaptured).
if (isa<LoadInst>(V))
return true;
return false;
}
/// Returns the size of the object specified by V or UnknownSize if unknown.
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
const TargetLibraryInfo &TLI,
bool RoundToAlign = false) {
uint64_t Size;
if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
return Size;
return MemoryLocation::UnknownSize;
}
/// Returns true if we can prove that the object specified by V is smaller than
/// Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
const DataLayout &DL,
const TargetLibraryInfo &TLI) {
// Note that the meanings of the "object" are slightly different in the
// following contexts:
// c1: llvm::getObjectSize()
// c2: llvm.objectsize() intrinsic
// c3: isObjectSmallerThan()
// c1 and c2 share the same meaning; however, the meaning of "object" in c3
// refers to the "entire object".
//
// Consider this example:
// char *p = (char*)malloc(100)
// char *q = p+80;
//
// In the context of c1 and c2, the "object" pointed by q refers to the
// stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
//
// However, in the context of c3, the "object" refers to the chunk of memory
// being allocated. So, the "object" has 100 bytes, and q points to the middle
// the "object". In case q is passed to isObjectSmallerThan() as the 1st
// parameter, before the llvm::getObjectSize() is called to get the size of
// entire object, we should:
// - either rewind the pointer q to the base-address of the object in
// question (in this case rewind to p), or
// - just give up. It is up to caller to make sure the pointer is pointing
// to the base address the object.
//
// We go for 2nd option for simplicity.
if (!isIdentifiedObject(V))
return false;
// This function needs to use the aligned object size because we allow
// reads a bit past the end given sufficient alignment.
uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
}
/// Returns true if we can prove that the object specified by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
const TargetLibraryInfo &TLI) {
uint64_t ObjectSize = getObjectSize(V, DL, TLI);
return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
}
//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//
/// Analyzes the specified value as a linear expression: "A*V + B", where A and
/// B are constant integers.
///
/// Returns the scale and offset values as APInts and return V as a Value*, and
/// return whether we looked through any sign or zero extends. The incoming
/// Value is known to have IntegerType, and it may already be sign or zero
/// extended.
///
/// Note that this looks through extends, so the high bits may not be
/// represented in the result.
/*static*/ const Value *BasicAAResult::GetLinearExpression(
const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
assert(V->getType()->isIntegerTy() && "Not an integer value");
// Limit our recursion depth.
if (Depth == 6) {
Scale = 1;
Offset = 0;
return V;
}
if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
// If it's a constant, just convert it to an offset and remove the variable.
// If we've been called recursively, the Offset bit width will be greater
// than the constant's (the Offset's always as wide as the outermost call),
// so we'll zext here and process any extension in the isa<SExtInst> &
// isa<ZExtInst> cases below.
Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
assert(Scale == 0 && "Constant values don't have a scale");
return V;
}
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
// If we've been called recursively, then Offset and Scale will be wider
// than the BOp operands. We'll always zext it here as we'll process sign
// extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
switch (BOp->getOpcode()) {
default:
// We don't understand this instruction, so we can't decompose it any
// further.
Scale = 1;
Offset = 0;
return V;
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
BOp, DT)) {
Scale = 1;
Offset = 0;
return V;
}
// FALL THROUGH.
case Instruction::Add:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
Offset += RHS;
break;
case Instruction::Sub:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
Offset -= RHS;
break;
case Instruction::Mul:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
Offset *= RHS;
Scale *= RHS;
break;
case Instruction::Shl:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
Offset <<= RHS.getLimitedValue();
Scale <<= RHS.getLimitedValue();
// the semantics of nsw and nuw for left shifts don't match those of
// multiplications, so we won't propagate them.
NSW = NUW = false;
return V;
}
if (isa<OverflowingBinaryOperator>(BOp)) {
NUW &= BOp->hasNoUnsignedWrap();
NSW &= BOp->hasNoSignedWrap();
}
return V;
}
}
// Since GEP indices are sign extended anyway, we don't care about the high
// bits of a sign or zero extended value - just scales and offsets. The
// extensions have to be consistent though.
if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
Value *CastOp = cast<CastInst>(V)->getOperand(0);
unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
const Value *Result =
GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
Depth + 1, AC, DT, NSW, NUW);
// zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
// by just incrementing the number of bits we've extended by.
unsigned ExtendedBy = NewWidth - SmallWidth;
if (isa<SExtInst>(V) && ZExtBits == 0) {
// sext(sext(%x, a), b) == sext(%x, a + b)
if (NSW) {
// We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
// into sext(%x) + sext(c). We'll sext the Offset ourselves:
unsigned OldWidth = Offset.getBitWidth();
Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
} else {
// We may have signed-wrapped, so don't decompose sext(%x + c) into
// sext(%x) + sext(c)
Scale = 1;
Offset = 0;
Result = CastOp;
ZExtBits = OldZExtBits;
SExtBits = OldSExtBits;
}
SExtBits += ExtendedBy;
} else {
// sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
if (!NUW) {
// We may have unsigned-wrapped, so don't decompose zext(%x + c) into
// zext(%x) + zext(c)
Scale = 1;
Offset = 0;
Result = CastOp;
ZExtBits = OldZExtBits;
SExtBits = OldSExtBits;
}
ZExtBits += ExtendedBy;
}
return Result;
}
Scale = 1;
Offset = 0;
return V;
}
/// To ensure a pointer offset fits in an integer of size PointerSize
/// (in bits) when that size is smaller than 64. This is an issue in
/// particular for 32b programs with negative indices that rely on two's
/// complement wrap-arounds for precise alias information.
static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
assert(PointerSize <= 64 && "Invalid PointerSize!");
unsigned ShiftBits = 64 - PointerSize;
return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
}
/// If V is a symbolic pointer expression, decompose it into a base pointer
/// with a constant offset and a number of scaled symbolic offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When DataLayout is around, this function is capable of analyzing everything
/// that GetUnderlyingObject can look through. To be able to do that
/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
/// through pointer casts.
/*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
const Value *V, int64_t &BaseOffs,
SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = MaxLookupSearchDepth;
MaxLookupReached = false;
SearchTimes++;
BaseOffs = 0;
do {
// See if this is a bitcast or GEP.
const Operator *Op = dyn_cast<Operator>(V);
if (!Op) {
// The only non-operator case we can handle are GlobalAliases.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->mayBeOverridden()) {
V = GA->getAliasee();
continue;
}
}
return V;
}
if (Op->getOpcode() == Instruction::BitCast ||
Op->getOpcode() == Instruction::AddrSpaceCast) {
V = Op->getOperand(0);
continue;
}
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
if (!GEPOp) {
// If it's not a GEP, hand it off to SimplifyInstruction to see if it
// can come up with something. This matches what GetUnderlyingObject does.
if (const Instruction *I = dyn_cast<Instruction>(V))
// TODO: Get a DominatorTree and AssumptionCache and use them here
// (these are both now available in this function, but this should be
// updated when GetUnderlyingObject is updated). TLI should be
// provided also.
if (const Value *Simplified =
SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
V = Simplified;
continue;
}
return V;
}
// Don't attempt to analyze GEPs over unsized objects.
if (!GEPOp->getSourceElementType()->isSized())
return V;
unsigned AS = GEPOp->getPointerAddressSpace();
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
gep_type_iterator GTI = gep_type_begin(GEPOp);
unsigned PointerSize = DL.getPointerSizeInBits(AS);
for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
I != E; ++I) {
const Value *Index = *I;
// Compute the (potentially symbolic) offset in bytes for this index.
if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
if (FieldNo == 0)
continue;
BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero())
continue;
BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
continue;
}
uint64_t Scale = DL.getTypeAllocSize(*GTI);
unsigned ZExtBits = 0, SExtBits = 0;
// If the integer type is smaller than the pointer size, it is implicitly
// sign extended to pointer size.
unsigned Width = Index->getType()->getIntegerBitWidth();
if (PointerSize > Width)
SExtBits += PointerSize - Width;
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
bool NSW = true, NUW = true;
Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
SExtBits, DL, 0, AC, DT, NSW, NUW);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
BaseOffs += IndexOffset.getSExtValue() * Scale;
Scale *= IndexScale.getSExtValue();
// If we already had an occurrence of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
VarIndices[i].SExtBits == SExtBits) {
Scale += VarIndices[i].Scale;
VarIndices.erase(VarIndices.begin() + i);
break;
}
}
// Make sure that we have a scale that makes sense for this target's
// pointer size.
Scale = adjustToPointerSize(Scale, PointerSize);
if (Scale) {
VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
static_cast<int64_t>(Scale)};
VarIndices.push_back(Entry);
}
}
// Take care of wrap-arounds
BaseOffs = adjustToPointerSize(BaseOffs, PointerSize);
// Analyze the base pointer next.
V = GEPOp->getOperand(0);
} while (--MaxLookup);
// If the chain of expressions is too deep, just return early.
MaxLookupReached = true;
SearchLimitReached++;
return V;
}
/// Returns whether the given pointer value points to memory that is local to
/// the function, with global constants being considered local to all
/// functions.
bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) {
assert(Visited.empty() && "Visited must be cleared after use!");
unsigned MaxLookup = 8;
SmallVector<const Value *, 16> Worklist;
Worklist.push_back(Loc.Ptr);
do {
const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
if (!Visited.insert(V).second) {
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
}
// An alloca instruction defines local memory.
if (OrLocal && isa<AllocaInst>(V))
continue;
// A global constant counts as local memory for our purposes.
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
// Note: this doesn't require GV to be "ODR" because it isn't legal for a
// global to be marked constant in some modules and non-constant in
// others. GV may even be a declaration, not a definition.
if (!GV->isConstant()) {
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
}
continue;
}
// If both select values point to local memory, then so does the select.
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
// If all values incoming to a phi node point to local memory, then so does
// the phi.
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
// Don't bother inspecting phi nodes with many operands.
if (PN->getNumIncomingValues() > MaxLookup) {
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
}
for (Value *IncValue : PN->incoming_values())
Worklist.push_back(IncValue);
continue;
}
// Otherwise be conservative.
Visited.clear();
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
} while (!Worklist.empty() && --MaxLookup);
Visited.clear();
return Worklist.empty();
}
// FIXME: This code is duplicated with MemoryLocation and should be hoisted to
// some common utility location.
static bool isMemsetPattern16(const Function *MS,
const TargetLibraryInfo &TLI) {
if (TLI.has(LibFunc::memset_pattern16) &&
MS->getName() == "memset_pattern16") {
FunctionType *MemsetType = MS->getFunctionType();
if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
isa<PointerType>(MemsetType->getParamType(0)) &&
isa<PointerType>(MemsetType->getParamType(1)) &&
isa<IntegerType>(MemsetType->getParamType(2)))
return true;
}
return false;
}
/// Returns the behavior when calling the given call site.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
if (CS.doesNotAccessMemory())
// Can't do better than this.
return FMRB_DoesNotAccessMemory;
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If the callsite knows it only reads memory, don't return worse
// than that.
if (CS.onlyReadsMemory())
Min = FMRB_OnlyReadsMemory;
if (CS.onlyAccessesArgMemory())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
// The AAResultBase base class has some smarts, lets use them.
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
}
/// Returns the behavior when calling the given function. For use when the call
/// site is not known.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
// If the function declares it doesn't access memory, we can't do better.
if (F->doesNotAccessMemory())
return FMRB_DoesNotAccessMemory;
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If the function declares it only reads memory, go with that.
if (F->onlyReadsMemory())
Min = FMRB_OnlyReadsMemory;
if (F->onlyAccessesArgMemory())
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
// Otherwise be conservative.
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
}
/// Returns true if this is a writeonly (i.e Mod only) parameter. Currently,
/// we don't have a writeonly attribute, so this only knows about builtin
/// intrinsics and target library functions. We could consider adding a
/// writeonly attribute in the future and moving all of these facts to either
/// Intrinsics.td or InferFunctionAttr.cpp
static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
const TargetLibraryInfo &TLI) {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
switch (II->getIntrinsicID()) {
default:
break;
case Intrinsic::memset:
case Intrinsic::memcpy:
case Intrinsic::memmove:
// We don't currently have a writeonly attribute. All other properties
// of these intrinsics are nicely described via attributes in
// Intrinsics.td and handled generically.
if (ArgIdx == 0)
return true;
}
// We can bound the aliasing properties of memset_pattern16 just as we can
// for memcpy/memset. This is particularly important because the
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
// whenever possible. Note that all but the missing writeonly attribute are
// handled via InferFunctionAttr.
if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI))
if (ArgIdx == 0)
return true;
// TODO: memset_pattern4, memset_pattern8
// TODO: _chk variants
// TODO: strcmp, strcpy
return false;
}
ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) {
// Emulate the missing writeonly attribute by checking for known builtin
// intrinsics and target library functions.
if (isWriteOnlyParam(CS, ArgIdx, TLI))
return MRI_Mod;
if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
return MRI_Ref;
if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
return MRI_NoModRef;
return AAResultBase::getArgModRefInfo(CS, ArgIdx);
}
static bool isAssumeIntrinsic(ImmutableCallSite CS) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
return II && II->getIntrinsicID() == Intrinsic::assume;
}
#ifndef NDEBUG
static const Function *getParent(const Value *V) {
if (const Instruction *inst = dyn_cast<Instruction>(V))
return inst->getParent()->getParent();
if (const Argument *arg = dyn_cast<Argument>(V))
return arg->getParent();
return nullptr;
}
static bool notDifferentParent(const Value *O1, const Value *O2) {
const Function *F1 = getParent(O1);
const Function *F2 = getParent(O2);
return !F1 || !F2 || F1 == F2;
}
#endif
AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
"BasicAliasAnalysis doesn't support interprocedural queries.");
// If we have a directly cached entry for these locations, we have recursed
// through this once, so just return the cached results. Notably, when this
// happens, we don't clear the cache.
auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
if (CacheIt != AliasCache.end())
return CacheIt->second;
AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
LocB.Size, LocB.AATags);
// AliasCache rarely has more than 1 or 2 elements, always use
// shrink_and_clear so it quickly returns to the inline capacity of the
// SmallDenseMap if it ever grows larger.
// FIXME: This should really be shrink_to_inline_capacity_and_clear().
AliasCache.shrink_and_clear();
VisitedPhiBBs.clear();
return Alias;
}
/// Checks to see if the specified callsite can clobber the specified memory
/// object.
///
/// Since we only look at local properties of this function, we really can't
/// say much about this query. We do, however, use simple "address taken"
/// analysis on local objects.
ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
"AliasAnalysis query involving multiple functions!");
const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
// If this is a tail call and Loc.Ptr points to a stack location, we know that
// the tail call cannot access or modify the local stack.
// We cannot exclude byval arguments here; these belong to the caller of
// the current function not to the current function, and a tail callee
// may reference them.
if (isa<AllocaInst>(Object))
if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
if (CI->isTailCall())
return MRI_NoModRef;
// If the pointer is to a locally allocated object that does not escape,
// then the call can not mod/ref the pointer unless the call takes the pointer
// as an argument, and itself doesn't capture it.
if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
isNonEscapingLocalObject(Object)) {
bool PassedAsArg = false;
unsigned OperandNo = 0;
for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
CI != CE; ++CI, ++OperandNo) {
// Only look at the no-capture or byval pointer arguments. If this
// pointer were passed to arguments that were neither of these, then it
// couldn't be no-capture.
if (!(*CI)->getType()->isPointerTy() ||
(!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
continue;
// If this is a no-capture pointer argument, see if we can tell that it
// is impossible to alias the pointer we're checking. If not, we have to
// assume that the call could touch the pointer, even though it doesn't
// escape.
AliasResult AR =
getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
if (AR) {
PassedAsArg = true;
break;
}
}
if (!PassedAsArg)
return MRI_NoModRef;
}
// While the assume intrinsic is marked as arbitrarily writing so that
// proper control dependencies will be maintained, it never aliases any
// particular memory location.
if (isAssumeIntrinsic(CS))
return MRI_NoModRef;
// The AAResultBase base class has some smarts, lets use them.
return AAResultBase::getModRefInfo(CS, Loc);
}
ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
// While the assume intrinsic is marked as arbitrarily writing so that
// proper control dependencies will be maintained, it never aliases any
// particular memory location.
if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
return MRI_NoModRef;
// The AAResultBase base class has some smarts, lets use them.
return AAResultBase::getModRefInfo(CS1, CS2);
}
/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
/// both having the exact same pointer operand.
static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
uint64_t V1Size,
const GEPOperator *GEP2,
uint64_t V2Size,
const DataLayout &DL) {
assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
"Expected GEPs with the same pointer operand");
// Try to determine whether GEP1 and GEP2 index through arrays, into structs,
// such that the struct field accesses provably cannot alias.
// We also need at least two indices (the pointer, and the struct field).
if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
GEP1->getNumIndices() < 2)
return MayAlias;
// If we don't know the size of the accesses through both GEPs, we can't
// determine whether the struct fields accessed can't alias.
if (V1Size == MemoryLocation::UnknownSize ||
V2Size == MemoryLocation::UnknownSize)
return MayAlias;
ConstantInt *C1 =
dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
ConstantInt *C2 =
dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
// If the last (struct) indices are constants and are equal, the other indices
// might be also be dynamically equal, so the GEPs can alias.
if (C1 && C2 && C1 == C2)
return MayAlias;
// Find the last-indexed type of the GEP, i.e., the type you'd get if
// you stripped the last index.
// On the way, look at each indexed type. If there's something other
// than an array, different indices can lead to different final types.
SmallVector<Value *, 8> IntermediateIndices;
// Insert the first index; we don't need to check the type indexed
// through it as it only drops the pointer indirection.
assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
IntermediateIndices.push_back(GEP1->getOperand(1));
// Insert all the remaining indices but the last one.
// Also, check that they all index through arrays.
for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
GEP1->getSourceElementType(), IntermediateIndices)))
return MayAlias;
IntermediateIndices.push_back(GEP1->getOperand(i + 1));
}
auto *Ty = GetElementPtrInst::getIndexedType(
GEP1->getSourceElementType(), IntermediateIndices);
StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
if (isa<SequentialType>(Ty)) {
// We know that:
// - both GEPs begin indexing from the exact same pointer;
// - the last indices in both GEPs are constants, indexing into a sequential
// type (array or pointer);
// - both GEPs only index through arrays prior to that.
//
// Because array indices greater than the number of elements are valid in
// GEPs, unless we know the intermediate indices are identical between
// GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
// partially overlap. We also need to check that the loaded size matches
// the element size, otherwise we could still have overlap.
const uint64_t ElementSize =
DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
if (V1Size != ElementSize || V2Size != ElementSize)
return MayAlias;
for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
return MayAlias;
// Now we know that the array/pointer that GEP1 indexes into and that
// that GEP2 indexes into must either precisely overlap or be disjoint.
// Because they cannot partially overlap and because fields in an array
// cannot overlap, if we can prove the final indices are different between
// GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
// If the last indices are constants, we've already checked they don't
// equal each other so we can exit early.
if (C1 && C2)
return NoAlias;
if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
GEP2->getOperand(GEP2->getNumOperands() - 1),
DL))
return NoAlias;
return MayAlias;
} else if (!LastIndexedStruct || !C1 || !C2) {
return MayAlias;
}
// We know that:
// - both GEPs begin indexing from the exact same pointer;
// - the last indices in both GEPs are constants, indexing into a struct;
// - said indices are different, hence, the pointed-to fields are different;
// - both GEPs only index through arrays prior to that.
//
// This lets us determine that the struct that GEP1 indexes into and the
// struct that GEP2 indexes into must either precisely overlap or be
// completely disjoint. Because they cannot partially overlap, indexing into
// different non-overlapping fields of the struct will never alias.
// Therefore, the only remaining thing needed to show that both GEPs can't
// alias is that the fields are not overlapping.
const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
const uint64_t StructSize = SL->getSizeInBytes();
const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
uint64_t V2Off, uint64_t V2Size) {
return V1Off < V2Off && V1Off + V1Size <= V2Off &&
((V2Off + V2Size <= StructSize) ||
(V2Off + V2Size - StructSize <= V1Off));
};
if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
return NoAlias;
return MayAlias;
}
/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer.
///
/// We know that V1 is a GEP, but we don't know anything about V2.
/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
/// V2.
AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
const AAMDNodes &V1AAInfo, const Value *V2,
uint64_t V2Size, const AAMDNodes &V2AAInfo,
const Value *UnderlyingV1,
const Value *UnderlyingV2) {
int64_t GEP1BaseOffset;
bool GEP1MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
// If we have two gep instructions with must-alias or not-alias'ing base
// pointers, figure out if the indexes to the GEP tell us anything about the
// derived pointer.
if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
// Do the base pointers alias?
AliasResult BaseAlias =
aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
// Check for geps of non-aliasing underlying pointers where the offsets are
// identical.
if ((BaseAlias == MayAlias) && V1Size == V2Size) {
// Do the base pointers alias assuming type and size.
AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
UnderlyingV2, V2Size, V2AAInfo);
if (PreciseBaseAlias == NoAlias) {
// See if the computed offset from the common pointer tells us about the
// relation of the resulting pointer.
int64_t GEP2BaseOffset;
bool GEP2MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
GEP2MaxLookupReached, DL, &AC, DT);
const Value *GEP1BasePtr =
DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
GEP1MaxLookupReached, DL, &AC, DT);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
// FIXME: They always have a DataLayout, so this should become an
// assert.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
return MayAlias;
}
// If the max search depth is reached the result is undefined
if (GEP2MaxLookupReached || GEP1MaxLookupReached)
return MayAlias;
// Same offsets.
if (GEP1BaseOffset == GEP2BaseOffset &&
GEP1VariableIndices == GEP2VariableIndices)
return NoAlias;
GEP1VariableIndices.clear();
}
}
// If we get a No or May, then return it immediately, no amount of analysis
// will improve this situation.
if (BaseAlias != MustAlias)
return BaseAlias;
// Otherwise, we have a MustAlias. Since the base pointers alias each other
// exactly, see if the computed offset from the common pointer tells us
// about the relation of the resulting pointer.
const Value *GEP1BasePtr =
DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
GEP1MaxLookupReached, DL, &AC, DT);
int64_t GEP2BaseOffset;
bool GEP2MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
GEP2MaxLookupReached, DL, &AC, DT);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
// FIXME: They always have a DataLayout, so this should become an assert.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
return MayAlias;
}
// If we know the two GEPs are based off of the exact same pointer (and not
// just the same underlying object), see if that tells us anything about
// the resulting pointers.
if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);