forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInstCombineVectorOps.cpp
2817 lines (2513 loc) · 113 KB
/
InstCombineVectorOps.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"
using namespace llvm;
using namespace PatternMatch;
STATISTIC(NumAggregateReconstructionsSimplified,
"Number of aggregate reconstructions turned into reuse of the "
"original aggregate");
/// Return true if the value is cheaper to scalarize than it is to leave as a
/// vector operation. If the extract index \p EI is a constant integer then
/// some operations may be cheap to scalarize.
///
/// FIXME: It's possible to create more instructions than previously existed.
static bool cheapToScalarize(Value *V, Value *EI) {
ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
// If we can pick a scalar constant value out of a vector, that is free.
if (auto *C = dyn_cast<Constant>(V))
return CEI || C->getSplatValue();
if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
// Index needs to be lower than the minimum size of the vector, because
// for scalable vector, the vector size is known at run time.
return CEI->getValue().ult(EC.getKnownMinValue());
}
// An insertelement to the same constant index as our extract will simplify
// to the scalar inserted element. An insertelement to a different constant
// index is irrelevant to our extract.
if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
return CEI;
if (match(V, m_OneUse(m_Load(m_Value()))))
return true;
if (match(V, m_OneUse(m_UnOp())))
return true;
Value *V0, *V1;
if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
return true;
CmpInst::Predicate UnusedPred;
if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
return true;
return false;
}
// If we have a PHI node with a vector type that is only used to feed
// itself and be an operand of extractelement at a constant location,
// try to replace the PHI of the vector type with a PHI of a scalar type.
Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
PHINode *PN) {
SmallVector<Instruction *, 2> Extracts;
// The users we want the PHI to have are:
// 1) The EI ExtractElement (we already know this)
// 2) Possibly more ExtractElements with the same index.
// 3) Another operand, which will feed back into the PHI.
Instruction *PHIUser = nullptr;
for (auto U : PN->users()) {
if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
if (EI.getIndexOperand() == EU->getIndexOperand())
Extracts.push_back(EU);
else
return nullptr;
} else if (!PHIUser) {
PHIUser = cast<Instruction>(U);
} else {
return nullptr;
}
}
if (!PHIUser)
return nullptr;
// Verify that this PHI user has one use, which is the PHI itself,
// and that it is a binary operation which is cheap to scalarize.
// otherwise return nullptr.
if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
!(isa<BinaryOperator>(PHIUser)) ||
!cheapToScalarize(PHIUser, EI.getIndexOperand()))
return nullptr;
// Create a scalar PHI node that will replace the vector PHI node
// just before the current PHI node.
PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
// Scalarize each PHI operand.
for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
Value *PHIInVal = PN->getIncomingValue(i);
BasicBlock *inBB = PN->getIncomingBlock(i);
Value *Elt = EI.getIndexOperand();
// If the operand is the PHI induction variable:
if (PHIInVal == PHIUser) {
// Scalarize the binary operation. Its first operand is the
// scalar PHI, and the second operand is extracted from the other
// vector operand.
BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
Value *Op = InsertNewInstWith(
ExtractElementInst::Create(B0->getOperand(opId), Elt,
B0->getOperand(opId)->getName() + ".Elt"),
*B0);
Value *newPHIUser = InsertNewInstWith(
BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
scalarPHI, Op, B0), *B0);
scalarPHI->addIncoming(newPHIUser, inBB);
} else {
// Scalarize PHI input:
Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
// Insert the new instruction into the predecessor basic block.
Instruction *pos = dyn_cast<Instruction>(PHIInVal);
BasicBlock::iterator InsertPos;
if (pos && !isa<PHINode>(pos)) {
InsertPos = ++pos->getIterator();
} else {
InsertPos = inBB->getFirstInsertionPt();
}
InsertNewInstWith(newEI, *InsertPos);
scalarPHI->addIncoming(newEI, inBB);
}
}
for (auto E : Extracts)
replaceInstUsesWith(*E, scalarPHI);
return &EI;
}
Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
Value *X;
uint64_t ExtIndexC;
if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
!match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
return nullptr;
ElementCount NumElts =
cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
Type *DestTy = Ext.getType();
bool IsBigEndian = DL.isBigEndian();
// If we are casting an integer to vector and extracting a portion, that is
// a shift-right and truncate.
// TODO: Allow FP dest type by casting the trunc to FP?
if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() &&
isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) {
assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
"Expected fixed vector type for bitcast from scalar integer");
// Big endian requires adjusting the extract index since MSB is at index 0.
// LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
// BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
if (IsBigEndian)
ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits();
if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) {
Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
return new TruncInst(Lshr, DestTy);
}
}
if (!X->getType()->isVectorTy())
return nullptr;
// If this extractelement is using a bitcast from a vector of the same number
// of elements, see if we can find the source element from the source vector:
// extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
auto *SrcTy = cast<VectorType>(X->getType());
ElementCount NumSrcElts = SrcTy->getElementCount();
if (NumSrcElts == NumElts)
if (Value *Elt = findScalarElement(X, ExtIndexC))
return new BitCastInst(Elt, DestTy);
assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
"Src and Dst must be the same sort of vector type");
// If the source elements are wider than the destination, try to shift and
// truncate a subset of scalar bits of an insert op.
if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
Value *Scalar;
uint64_t InsIndexC;
if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
m_ConstantInt(InsIndexC))))
return nullptr;
// The extract must be from the subset of vector elements that we inserted
// into. Example: if we inserted element 1 of a <2 x i64> and we are
// extracting an i16 (narrowing ratio = 4), then this extract must be from 1
// of elements 4-7 of the bitcasted vector.
unsigned NarrowingRatio =
NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
if (ExtIndexC / NarrowingRatio != InsIndexC)
return nullptr;
// We are extracting part of the original scalar. How that scalar is
// inserted into the vector depends on the endian-ness. Example:
// Vector Byte Elt Index: 0 1 2 3 4 5 6 7
// +--+--+--+--+--+--+--+--+
// inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
// extelt <4 x i16> V', 3: | |S2|S3|
// +--+--+--+--+--+--+--+--+
// If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
// If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
// In this example, we must right-shift little-endian. Big-endian is just a
// truncate.
unsigned Chunk = ExtIndexC % NarrowingRatio;
if (IsBigEndian)
Chunk = NarrowingRatio - 1 - Chunk;
// Bail out if this is an FP vector to FP vector sequence. That would take
// more instructions than we started with unless there is no shift, and it
// may not be handled as well in the backend.
bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
bool NeedDestBitcast = DestTy->isFloatingPointTy();
if (NeedSrcBitcast && NeedDestBitcast)
return nullptr;
unsigned SrcWidth = SrcTy->getScalarSizeInBits();
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
unsigned ShAmt = Chunk * DestWidth;
// TODO: This limitation is more strict than necessary. We could sum the
// number of new instructions and subtract the number eliminated to know if
// we can proceed.
if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
if (NeedSrcBitcast || NeedDestBitcast)
return nullptr;
if (NeedSrcBitcast) {
Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
}
if (ShAmt) {
// Bail out if we could end with more instructions than we started with.
if (!Ext.getVectorOperand()->hasOneUse())
return nullptr;
Scalar = Builder.CreateLShr(Scalar, ShAmt);
}
if (NeedDestBitcast) {
Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
}
return new TruncInst(Scalar, DestTy);
}
return nullptr;
}
/// Find elements of V demanded by UserInstr.
static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
// Conservatively assume that all elements are needed.
APInt UsedElts(APInt::getAllOnes(VWidth));
switch (UserInstr->getOpcode()) {
case Instruction::ExtractElement: {
ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
assert(EEI->getVectorOperand() == V);
ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
}
break;
}
case Instruction::ShuffleVector: {
ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
unsigned MaskNumElts =
cast<FixedVectorType>(UserInstr->getType())->getNumElements();
UsedElts = APInt(VWidth, 0);
for (unsigned i = 0; i < MaskNumElts; i++) {
unsigned MaskVal = Shuffle->getMaskValue(i);
if (MaskVal == -1u || MaskVal >= 2 * VWidth)
continue;
if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
UsedElts.setBit(MaskVal);
if (Shuffle->getOperand(1) == V &&
((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
UsedElts.setBit(MaskVal - VWidth);
}
break;
}
default:
break;
}
return UsedElts;
}
/// Find union of elements of V demanded by all its users.
/// If it is known by querying findDemandedEltsBySingleUser that
/// no user demands an element of V, then the corresponding bit
/// remains unset in the returned value.
static APInt findDemandedEltsByAllUsers(Value *V) {
unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
APInt UnionUsedElts(VWidth, 0);
for (const Use &U : V->uses()) {
if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
} else {
UnionUsedElts = APInt::getAllOnes(VWidth);
break;
}
if (UnionUsedElts.isAllOnes())
break;
}
return UnionUsedElts;
}
/// Given a constant index for a extractelement or insertelement instruction,
/// return it with the canonical type if it isn't already canonical. We
/// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't
/// matter, we just want a consistent type to simplify CSE.
ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
const unsigned IndexBW = IndexC->getType()->getBitWidth();
if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
return nullptr;
return ConstantInt::get(IndexC->getContext(),
IndexC->getValue().zextOrTrunc(64));
}
Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
Value *SrcVec = EI.getVectorOperand();
Value *Index = EI.getIndexOperand();
if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
SQ.getWithInstruction(&EI)))
return replaceInstUsesWith(EI, V);
// If extracting a specified index from the vector, see if we can recursively
// find a previously computed scalar that was inserted into the vector.
auto *IndexC = dyn_cast<ConstantInt>(Index);
if (IndexC) {
// Canonicalize type of constant indices to i64 to simplify CSE
if (auto *NewIdx = getPreferredVectorIndex(IndexC))
return replaceOperand(EI, 1, NewIdx);
ElementCount EC = EI.getVectorOperandType()->getElementCount();
unsigned NumElts = EC.getKnownMinValue();
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
Intrinsic::ID IID = II->getIntrinsicID();
// Index needs to be lower than the minimum size of the vector, because
// for scalable vector, the vector size is known at run time.
if (IID == Intrinsic::experimental_stepvector &&
IndexC->getValue().ult(NumElts)) {
Type *Ty = EI.getType();
unsigned BitWidth = Ty->getIntegerBitWidth();
Value *Idx;
// Return index when its value does not exceed the allowed limit
// for the element type of the vector, otherwise return undefined.
if (IndexC->getValue().getActiveBits() <= BitWidth)
Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
else
Idx = UndefValue::get(Ty);
return replaceInstUsesWith(EI, Idx);
}
}
// InstSimplify should handle cases where the index is invalid.
// For fixed-length vector, it's invalid to extract out-of-range element.
if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
return nullptr;
if (Instruction *I = foldBitcastExtElt(EI))
return I;
// If there's a vector PHI feeding a scalar use through this extractelement
// instruction, try to scalarize the PHI.
if (auto *Phi = dyn_cast<PHINode>(SrcVec))
if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
return ScalarPHI;
}
// TODO come up with a n-ary matcher that subsumes both unary and
// binary matchers.
UnaryOperator *UO;
if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
// extelt (unop X), Index --> unop (extelt X, Index)
Value *X = UO->getOperand(0);
Value *E = Builder.CreateExtractElement(X, Index);
return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
}
BinaryOperator *BO;
if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
// extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
Value *E0 = Builder.CreateExtractElement(X, Index);
Value *E1 = Builder.CreateExtractElement(Y, Index);
return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
}
Value *X, *Y;
CmpInst::Predicate Pred;
if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
cheapToScalarize(SrcVec, Index)) {
// extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
Value *E0 = Builder.CreateExtractElement(X, Index);
Value *E1 = Builder.CreateExtractElement(Y, Index);
return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
}
if (auto *I = dyn_cast<Instruction>(SrcVec)) {
if (auto *IE = dyn_cast<InsertElementInst>(I)) {
// instsimplify already handled the case where the indices are constants
// and equal by value, if both are constants, they must not be the same
// value, extract from the pre-inserted value instead.
if (isa<Constant>(IE->getOperand(2)) && IndexC)
return replaceOperand(EI, 0, IE->getOperand(0));
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
auto *VecType = cast<VectorType>(GEP->getType());
ElementCount EC = VecType->getElementCount();
uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
// Find out why we have a vector result - these are a few examples:
// 1. We have a scalar pointer and a vector of indices, or
// 2. We have a vector of pointers and a scalar index, or
// 3. We have a vector of pointers and a vector of indices, etc.
// Here we only consider combining when there is exactly one vector
// operand, since the optimization is less obviously a win due to
// needing more than one extractelements.
unsigned VectorOps =
llvm::count_if(GEP->operands(), [](const Value *V) {
return isa<VectorType>(V->getType());
});
if (VectorOps == 1) {
Value *NewPtr = GEP->getPointerOperand();
if (isa<VectorType>(NewPtr->getType()))
NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
SmallVector<Value *> NewOps;
for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
Value *Op = GEP->getOperand(I);
if (isa<VectorType>(Op->getType()))
NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
else
NewOps.push_back(Op);
}
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
GEP->getSourceElementType(), NewPtr, NewOps);
NewGEP->setIsInBounds(GEP->isInBounds());
return NewGEP;
}
}
} else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
// If this is extracting an element from a shufflevector, figure out where
// it came from and extract from the appropriate input element instead.
// Restrict the following transformation to fixed-length vector.
if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
int SrcIdx =
SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
Value *Src;
unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
->getNumElements();
if (SrcIdx < 0)
return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
if (SrcIdx < (int)LHSWidth)
Src = SVI->getOperand(0);
else {
SrcIdx -= LHSWidth;
Src = SVI->getOperand(1);
}
Type *Int32Ty = Type::getInt32Ty(EI.getContext());
return ExtractElementInst::Create(
Src, ConstantInt::get(Int32Ty, SrcIdx, false));
}
} else if (auto *CI = dyn_cast<CastInst>(I)) {
// Canonicalize extractelement(cast) -> cast(extractelement).
// Bitcasts can change the number of vector elements, and they cost
// nothing.
if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
return CastInst::Create(CI->getOpcode(), EE, EI.getType());
}
}
}
// Run demanded elements after other transforms as this can drop flags on
// binops. If there's two paths to the same final result, we prefer the
// one which doesn't force us to drop flags.
if (IndexC) {
ElementCount EC = EI.getVectorOperandType()->getElementCount();
unsigned NumElts = EC.getKnownMinValue();
// This instruction only demands the single element from the input vector.
// Skip for scalable type, the number of elements is unknown at
// compile-time.
if (!EC.isScalable() && NumElts != 1) {
// If the input vector has a single use, simplify it based on this use
// property.
if (SrcVec->hasOneUse()) {
APInt UndefElts(NumElts, 0);
APInt DemandedElts(NumElts, 0);
DemandedElts.setBit(IndexC->getZExtValue());
if (Value *V =
SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
return replaceOperand(EI, 0, V);
} else {
// If the input vector has multiple uses, simplify it based on a union
// of all elements used.
APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
if (!DemandedElts.isAllOnes()) {
APInt UndefElts(NumElts, 0);
if (Value *V = SimplifyDemandedVectorElts(
SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
true /* AllowMultipleUsers */)) {
if (V != SrcVec) {
SrcVec->replaceAllUsesWith(V);
return &EI;
}
}
}
}
}
}
return nullptr;
}
/// If V is a shuffle of values that ONLY returns elements from either LHS or
/// RHS, return the shuffle mask and true. Otherwise, return false.
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
SmallVectorImpl<int> &Mask) {
assert(LHS->getType() == RHS->getType() &&
"Invalid CollectSingleShuffleElements");
unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
if (match(V, m_Undef())) {
Mask.assign(NumElts, -1);
return true;
}
if (V == LHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i);
return true;
}
if (V == RHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i + NumElts);
return true;
}
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
if (!isa<ConstantInt>(IdxOp))
return false;
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
// We can handle this if the vector we are inserting into is
// transitively ok.
if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
// If so, update the mask to reflect the inserted undef.
Mask[InsertedIdx] = -1;
return true;
}
} else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
if (isa<ConstantInt>(EI->getOperand(1))) {
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned NumLHSElts =
cast<FixedVectorType>(LHS->getType())->getNumElements();
// This must be extracting from either LHS or RHS.
if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
// We can handle this if the vector we are inserting into is
// transitively ok.
if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
// If so, update the mask to reflect the inserted value.
if (EI->getOperand(0) == LHS) {
Mask[InsertedIdx % NumElts] = ExtractedIdx;
} else {
assert(EI->getOperand(0) == RHS);
Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
}
return true;
}
}
}
}
}
return false;
}
/// If we have insertion into a vector that is wider than the vector that we
/// are extracting from, try to widen the source vector to allow a single
/// shufflevector to replace one or more insert/extract pairs.
static void replaceExtractElements(InsertElementInst *InsElt,
ExtractElementInst *ExtElt,
InstCombinerImpl &IC) {
auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
unsigned NumInsElts = InsVecType->getNumElements();
unsigned NumExtElts = ExtVecType->getNumElements();
// The inserted-to vector must be wider than the extracted-from vector.
if (InsVecType->getElementType() != ExtVecType->getElementType() ||
NumExtElts >= NumInsElts)
return;
// Create a shuffle mask to widen the extended-from vector using poison
// values. The mask selects all of the values of the original vector followed
// by as many poison values as needed to create a vector of the same length
// as the inserted-to vector.
SmallVector<int, 16> ExtendMask;
for (unsigned i = 0; i < NumExtElts; ++i)
ExtendMask.push_back(i);
for (unsigned i = NumExtElts; i < NumInsElts; ++i)
ExtendMask.push_back(-1);
Value *ExtVecOp = ExtElt->getVectorOperand();
auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
? ExtVecOpInst->getParent()
: ExtElt->getParent();
// TODO: This restriction matches the basic block check below when creating
// new extractelement instructions. If that limitation is removed, this one
// could also be removed. But for now, we just bail out to ensure that we
// will replace the extractelement instruction that is feeding our
// insertelement instruction. This allows the insertelement to then be
// replaced by a shufflevector. If the insertelement is not replaced, we can
// induce infinite looping because there's an optimization for extractelement
// that will delete our widening shuffle. This would trigger another attempt
// here to create that shuffle, and we spin forever.
if (InsertionBlock != InsElt->getParent())
return;
// TODO: This restriction matches the check in visitInsertElementInst() and
// prevents an infinite loop caused by not turning the extract/insert pair
// into a shuffle. We really should not need either check, but we're lacking
// folds for shufflevectors because we're afraid to generate shuffle masks
// that the backend can't handle.
if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
return;
auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
// Insert the new shuffle after the vector operand of the extract is defined
// (as long as it's not a PHI) or at the start of the basic block of the
// extract, so any subsequent extracts in the same basic block can use it.
// TODO: Insert before the earliest ExtractElementInst that is replaced.
if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
WideVec->insertAfter(ExtVecOpInst);
else
IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
// Replace extracts from the original narrow vector with extracts from the new
// wide vector.
for (User *U : ExtVecOp->users()) {
ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
if (!OldExt || OldExt->getParent() != WideVec->getParent())
continue;
auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
NewExt->insertAfter(OldExt);
IC.replaceInstUsesWith(*OldExt, NewExt);
}
}
/// We are building a shuffle to create V, which is a sequence of insertelement,
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
/// not rely on the second vector source. Return a std::pair containing the
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
/// parameter as required.
///
/// Note: we intentionally don't try to fold earlier shuffles since they have
/// often been chosen carefully to be efficiently implementable on the target.
using ShuffleOps = std::pair<Value *, Value *>;
static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
Value *PermittedRHS,
InstCombinerImpl &IC) {
assert(V->getType()->isVectorTy() && "Invalid shuffle!");
unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
if (match(V, m_Undef())) {
Mask.assign(NumElts, -1);
return std::make_pair(
PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
}
if (isa<ConstantAggregateZero>(V)) {
Mask.assign(NumElts, 0);
return std::make_pair(V, nullptr);
}
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
// Either the extracted from or inserted into vector must be RHSVec,
// otherwise we'd end up with a shuffle of three inputs.
if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
Value *RHS = EI->getOperand(0);
ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
assert(LR.second == nullptr || LR.second == RHS);
if (LR.first->getType() != RHS->getType()) {
// Although we are giving up for now, see if we can create extracts
// that match the inserts for another round of combining.
replaceExtractElements(IEI, EI, IC);
// We tried our best, but we can't find anything compatible with RHS
// further up the chain. Return a trivial shuffle.
for (unsigned i = 0; i < NumElts; ++i)
Mask[i] = i;
return std::make_pair(V, nullptr);
}
unsigned NumLHSElts =
cast<FixedVectorType>(RHS->getType())->getNumElements();
Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
return std::make_pair(LR.first, RHS);
}
if (VecOp == PermittedRHS) {
// We've gone as far as we can: anything on the other side of the
// extractelement will already have been converted into a shuffle.
unsigned NumLHSElts =
cast<FixedVectorType>(EI->getOperand(0)->getType())
->getNumElements();
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
return std::make_pair(EI->getOperand(0), PermittedRHS);
}
// If this insertelement is a chain that comes from exactly these two
// vectors, return the vector and the effective shuffle.
if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
Mask))
return std::make_pair(EI->getOperand(0), PermittedRHS);
}
}
}
// Otherwise, we can't do anything fancy. Return an identity vector.
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i);
return std::make_pair(V, nullptr);
}
/// Look for chain of insertvalue's that fully define an aggregate, and trace
/// back the values inserted, see if they are all were extractvalue'd from
/// the same source aggregate from the exact same element indexes.
/// If they were, just reuse the source aggregate.
/// This potentially deals with PHI indirections.
Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
InsertValueInst &OrigIVI) {
Type *AggTy = OrigIVI.getType();
unsigned NumAggElts;
switch (AggTy->getTypeID()) {
case Type::StructTyID:
NumAggElts = AggTy->getStructNumElements();
break;
case Type::ArrayTyID:
NumAggElts = AggTy->getArrayNumElements();
break;
default:
llvm_unreachable("Unhandled aggregate type?");
}
// Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
// to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
// FIXME: any interesting patterns to be caught with larger limit?
assert(NumAggElts > 0 && "Aggregate should have elements.");
if (NumAggElts > 2)
return nullptr;
static constexpr auto NotFound = None;
static constexpr auto FoundMismatch = nullptr;
// Try to find a value of each element of an aggregate.
// FIXME: deal with more complex, not one-dimensional, aggregate types
SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
// Do we know values for each element of the aggregate?
auto KnowAllElts = [&AggElts]() {
return all_of(AggElts,
[](Optional<Instruction *> Elt) { return Elt != NotFound; });
};
int Depth = 0;
// Arbitrary `insertvalue` visitation depth limit. Let's be okay with
// every element being overwritten twice, which should never happen.
static const int DepthLimit = 2 * NumAggElts;
// Recurse up the chain of `insertvalue` aggregate operands until either we've
// reconstructed full initializer or can't visit any more `insertvalue`'s.
for (InsertValueInst *CurrIVI = &OrigIVI;
Depth < DepthLimit && CurrIVI && !KnowAllElts();
CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
++Depth) {
auto *InsertedValue =
dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
if (!InsertedValue)
return nullptr; // Inserted value must be produced by an instruction.
ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
// Don't bother with more than single-level aggregates.
if (Indices.size() != 1)
return nullptr; // FIXME: deal with more complex aggregates?
// Now, we may have already previously recorded the value for this element
// of an aggregate. If we did, that means the CurrIVI will later be
// overwritten with the already-recorded value. But if not, let's record it!
Optional<Instruction *> &Elt = AggElts[Indices.front()];
Elt = Elt.getValueOr(InsertedValue);
// FIXME: should we handle chain-terminating undef base operand?
}
// Was that sufficient to deduce the full initializer for the aggregate?
if (!KnowAllElts())
return nullptr; // Give up then.
// We now want to find the source[s] of the aggregate elements we've found.
// And with "source" we mean the original aggregate[s] from which
// the inserted elements were extracted. This may require PHI translation.
enum class AggregateDescription {
/// When analyzing the value that was inserted into an aggregate, we did
/// not manage to find defining `extractvalue` instruction to analyze.
NotFound,
/// When analyzing the value that was inserted into an aggregate, we did
/// manage to find defining `extractvalue` instruction[s], and everything
/// matched perfectly - aggregate type, element insertion/extraction index.
Found,
/// When analyzing the value that was inserted into an aggregate, we did
/// manage to find defining `extractvalue` instruction, but there was
/// a mismatch: either the source type from which the extraction was didn't
/// match the aggregate type into which the insertion was,
/// or the extraction/insertion channels mismatched,
/// or different elements had different source aggregates.
FoundMismatch
};
auto Describe = [](Optional<Value *> SourceAggregate) {
if (SourceAggregate == NotFound)
return AggregateDescription::NotFound;
if (*SourceAggregate == FoundMismatch)
return AggregateDescription::FoundMismatch;
return AggregateDescription::Found;
};
// Given the value \p Elt that was being inserted into element \p EltIdx of an
// aggregate AggTy, see if \p Elt was originally defined by an
// appropriate extractvalue (same element index, same aggregate type).
// If found, return the source aggregate from which the extraction was.
// If \p PredBB is provided, does PHI translation of an \p Elt first.
auto FindSourceAggregate =
[&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
Optional<BasicBlock *> PredBB) -> Optional<Value *> {
// For now(?), only deal with, at most, a single level of PHI indirection.
if (UseBB && PredBB)
Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
// FIXME: deal with multiple levels of PHI indirection?
// Did we find an extraction?
auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
if (!EVI)
return NotFound;
Value *SourceAggregate = EVI->getAggregateOperand();
// Is the extraction from the same type into which the insertion was?
if (SourceAggregate->getType() != AggTy)
return FoundMismatch;
// And the element index doesn't change between extraction and insertion?
if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
return FoundMismatch;
return SourceAggregate; // AggregateDescription::Found
};
// Given elements AggElts that were constructing an aggregate OrigIVI,
// see if we can find appropriate source aggregate for each of the elements,
// and see it's the same aggregate for each element. If so, return it.
auto FindCommonSourceAggregate =
[&](Optional<BasicBlock *> UseBB,
Optional<BasicBlock *> PredBB) -> Optional<Value *> {
Optional<Value *> SourceAggregate;
for (auto I : enumerate(AggElts)) {
assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
"We don't store nullptr in SourceAggregate!");
assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
(I.index() != 0) &&
"SourceAggregate should be valid after the first element,");
// For this element, is there a plausible source aggregate?
// FIXME: we could special-case undef element, IFF we know that in the
// source aggregate said element isn't poison.
Optional<Value *> SourceAggregateForElement =
FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
// Okay, what have we found? Does that correlate with previous findings?
// Regardless of whether or not we have previously found source
// aggregate for previous elements (if any), if we didn't find one for
// this element, passthrough whatever we have just found.
if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
return SourceAggregateForElement;
// Okay, we have found source aggregate for this element.
// Let's see what we already know from previous elements, if any.
switch (Describe(SourceAggregate)) {
case AggregateDescription::NotFound:
// This is apparently the first element that we have examined.
SourceAggregate = SourceAggregateForElement; // Record the aggregate!
continue; // Great, now look at next element.
case AggregateDescription::Found:
// We have previously already successfully examined other elements.
// Is this the same source aggregate we've found for other elements?
if (*SourceAggregateForElement != *SourceAggregate)
return FoundMismatch;
continue; // Still the same aggregate, look at next element.
case AggregateDescription::FoundMismatch:
llvm_unreachable("Can't happen. We would have early-exited then.");
};
}
assert(Describe(SourceAggregate) == AggregateDescription::Found &&
"Must be a valid Value");
return *SourceAggregate;
};