forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoopIdiomRecognize.cpp
2910 lines (2500 loc) · 110 KB
/
LoopIdiomRecognize.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements an idiom recognizer that transforms simple loops into a
// non-loop form. In cases that this kicks in, it can be a significant
// performance win.
//
// If compiling for code size we avoid idiom recognition if the resulting
// code could be larger than the code for the original loop. One way this could
// happen is if the loop is not removable after idiom recognition due to the
// presence of non-idiom instructions. The initial implementation of the
// heuristics applies to idioms in multi-block loops.
//
//===----------------------------------------------------------------------===//
//
// TODO List:
//
// Future loop memory idioms to recognize:
// memcmp, strlen, etc.
// Future floating point idioms to recognize in -ffast-math mode:
// fpowi
// Future integer operation idioms to recognize:
// ctpop
//
// Beware that isel's default lowering for ctpop is highly inefficient for
// i64 and larger types when i64 is legal and the value has few bits set. It
// would be good to enhance isel to emit a loop for ctpop in this case.
//
// This could recognize common matrix multiplies and dot product idioms and
// replace them with calls to BLAS (if linked in??).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CmpInstAnalysis.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "loop-idiom"
STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
STATISTIC(
NumShiftUntilBitTest,
"Number of uncountable loops recognized as 'shift until bitttest' idiom");
STATISTIC(NumShiftUntilZero,
"Number of uncountable loops recognized as 'shift until zero' idiom");
bool DisableLIRP::All;
static cl::opt<bool, true>
DisableLIRPAll("disable-" DEBUG_TYPE "-all",
cl::desc("Options to disable Loop Idiom Recognize Pass."),
cl::location(DisableLIRP::All), cl::init(false),
cl::ReallyHidden);
bool DisableLIRP::Memset;
static cl::opt<bool, true>
DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
cl::desc("Proceed with loop idiom recognize pass, but do "
"not convert loop(s) to memset."),
cl::location(DisableLIRP::Memset), cl::init(false),
cl::ReallyHidden);
bool DisableLIRP::Memcpy;
static cl::opt<bool, true>
DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
cl::desc("Proceed with loop idiom recognize pass, but do "
"not convert loop(s) to memcpy."),
cl::location(DisableLIRP::Memcpy), cl::init(false),
cl::ReallyHidden);
static cl::opt<bool> UseLIRCodeSizeHeurs(
"use-lir-code-size-heurs",
cl::desc("Use loop idiom recognition code size heuristics when compiling"
"with -Os/-Oz"),
cl::init(true), cl::Hidden);
namespace {
class LoopIdiomRecognize {
Loop *CurLoop = nullptr;
AliasAnalysis *AA;
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
const TargetTransformInfo *TTI;
const DataLayout *DL;
OptimizationRemarkEmitter &ORE;
bool ApplyCodeSizeHeuristics;
std::unique_ptr<MemorySSAUpdater> MSSAU;
public:
explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
LoopInfo *LI, ScalarEvolution *SE,
TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, MemorySSA *MSSA,
const DataLayout *DL,
OptimizationRemarkEmitter &ORE)
: AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
if (MSSA)
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
}
bool runOnLoop(Loop *L);
private:
using StoreList = SmallVector<StoreInst *, 8>;
using StoreListMap = MapVector<Value *, StoreList>;
StoreListMap StoreRefsForMemset;
StoreListMap StoreRefsForMemsetPattern;
StoreList StoreRefsForMemcpy;
bool HasMemset;
bool HasMemsetPattern;
bool HasMemcpy;
/// Return code for isLegalStore()
enum LegalStoreKind {
None = 0,
Memset,
MemsetPattern,
Memcpy,
UnorderedAtomicMemcpy,
DontUse // Dummy retval never to be used. Allows catching errors in retval
// handling.
};
/// \name Countable Loop Idiom Handling
/// @{
bool runOnCountableLoop();
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
SmallVectorImpl<BasicBlock *> &ExitBlocks);
void collectStores(BasicBlock *BB);
LegalStoreKind isLegalStore(StoreInst *SI);
enum class ForMemset { No, Yes };
bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
ForMemset For);
template <typename MemInst>
bool processLoopMemIntrinsic(
BasicBlock *BB,
bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
const SCEV *BECount);
bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
MaybeAlign StoreAlignment, Value *StoredVal,
Instruction *TheStore,
SmallPtrSetImpl<Instruction *> &Stores,
const SCEVAddRecExpr *Ev, const SCEV *BECount,
bool IsNegStride, bool IsLoopMemset = false);
bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
const SCEV *StoreSize, MaybeAlign StoreAlign,
MaybeAlign LoadAlign, Instruction *TheStore,
Instruction *TheLoad,
const SCEVAddRecExpr *StoreEv,
const SCEVAddRecExpr *LoadEv,
const SCEV *BECount);
bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
bool IsLoopMemset = false);
/// @}
/// \name Noncountable Loop Idiom Handling
/// @{
bool runOnNoncountableLoop();
bool recognizePopcount();
void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
PHINode *CntPhi, Value *Var);
bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
Instruction *CntInst, PHINode *CntPhi,
Value *Var, Instruction *DefX,
const DebugLoc &DL, bool ZeroCheck,
bool IsCntPhiUsedOutsideLoop);
bool recognizeShiftUntilBitTest();
bool recognizeShiftUntilZero();
/// @}
};
class LoopIdiomRecognizeLegacyPass : public LoopPass {
public:
static char ID;
explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
initializeLoopIdiomRecognizeLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (DisableLIRP::All)
return false;
if (skipLoop(L))
return false;
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
*L->getHeader()->getParent());
const TargetTransformInfo *TTI =
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
*L->getHeader()->getParent());
const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
MemorySSA *MSSA = nullptr;
if (MSSAAnalysis)
MSSA = &MSSAAnalysis->getMSSA();
// For the old PM, we can't use OptimizationRemarkEmitter as an analysis
// pass. Function analyses need to be preserved across loop transformations
// but ORE cannot be preserved (see comment before the pass definition).
OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
return LIR.runOnLoop(L);
}
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<MemorySSAWrapperPass>();
getLoopAnalysisUsage(AU);
}
};
} // end anonymous namespace
char LoopIdiomRecognizeLegacyPass::ID = 0;
PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &) {
if (DisableLIRP::All)
return PreservedAnalyses::all();
const auto *DL = &L.getHeader()->getModule()->getDataLayout();
// For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
// pass. Function analyses need to be preserved across loop transformations
// but ORE cannot be preserved (see comment before the pass definition).
OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
AR.MSSA, DL, ORE);
if (!LIR.runOnLoop(&L))
return PreservedAnalyses::all();
auto PA = getLoopPassPreservedAnalyses();
if (AR.MSSA)
PA.preserve<MemorySSAAnalysis>();
return PA;
}
INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
"Recognize loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
"Recognize loop idioms", false, false)
Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
static void deleteDeadInstruction(Instruction *I) {
I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
//===----------------------------------------------------------------------===//
//
// Implementation of LoopIdiomRecognize
//
//===----------------------------------------------------------------------===//
bool LoopIdiomRecognize::runOnLoop(Loop *L) {
CurLoop = L;
// If the loop could not be converted to canonical form, it must have an
// indirectbr in it, just give up.
if (!L->getLoopPreheader())
return false;
// Disable loop idiom recognition if the function's name is a common idiom.
StringRef Name = L->getHeader()->getParent()->getName();
if (Name == "memset" || Name == "memcpy")
return false;
// Determine if code size heuristics need to be applied.
ApplyCodeSizeHeuristics =
L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
HasMemset = TLI->has(LibFunc_memset);
HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
HasMemcpy = TLI->has(LibFunc_memcpy);
if (HasMemset || HasMemsetPattern || HasMemcpy)
if (SE->hasLoopInvariantBackedgeTakenCount(L))
return runOnCountableLoop();
return runOnNoncountableLoop();
}
bool LoopIdiomRecognize::runOnCountableLoop() {
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
assert(!isa<SCEVCouldNotCompute>(BECount) &&
"runOnCountableLoop() called on a loop without a predictable"
"backedge-taken count");
// If this loop executes exactly one time, then it should be peeled, not
// optimized by this pass.
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
if (BECst->getAPInt() == 0)
return false;
SmallVector<BasicBlock *, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName()
<< "] Countable Loop %" << CurLoop->getHeader()->getName()
<< "\n");
// The following transforms hoist stores/memsets into the loop pre-header.
// Give up if the loop has instructions that may throw.
SimpleLoopSafetyInfo SafetyInfo;
SafetyInfo.computeLoopSafetyInfo(CurLoop);
if (SafetyInfo.anyBlockMayThrow())
return false;
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
for (auto *BB : CurLoop->getBlocks()) {
// Ignore blocks in subloops.
if (LI->getLoopFor(BB) != CurLoop)
continue;
MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
}
return MadeChange;
}
static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
return ConstStride->getAPInt();
}
/// getMemSetPatternValue - If a strided store of the specified value is safe to
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
/// be passed in. Otherwise, return null.
///
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
/// just replicate their input array and then pass on to memset_pattern16.
static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
// FIXME: This could check for UndefValue because it can be merged into any
// other valid pattern.
// If the value isn't a constant, we can't promote it to being in a constant
// array. We could theoretically do a store to an alloca or something, but
// that doesn't seem worthwhile.
Constant *C = dyn_cast<Constant>(V);
if (!C)
return nullptr;
// Only handle simple values that are a power of two bytes in size.
uint64_t Size = DL->getTypeSizeInBits(V->getType());
if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
return nullptr;
// Don't care enough about darwin/ppc to implement this.
if (DL->isBigEndian())
return nullptr;
// Convert to size in bytes.
Size /= 8;
// TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
// if the top and bottom are the same (e.g. for vectors and large integers).
if (Size > 16)
return nullptr;
// If the constant is exactly 16 bytes, just use it.
if (Size == 16)
return C;
// Otherwise, we'll use an array of the constants.
unsigned ArraySize = 16 / Size;
ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
}
LoopIdiomRecognize::LegalStoreKind
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
// Don't touch volatile stores.
if (SI->isVolatile())
return LegalStoreKind::None;
// We only want simple or unordered-atomic stores.
if (!SI->isUnordered())
return LegalStoreKind::None;
// Avoid merging nontemporal stores.
if (SI->getMetadata(LLVMContext::MD_nontemporal))
return LegalStoreKind::None;
Value *StoredVal = SI->getValueOperand();
Value *StorePtr = SI->getPointerOperand();
// Don't convert stores of non-integral pointer types to memsets (which stores
// integers).
if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
return LegalStoreKind::None;
// Reject stores that are so large that they overflow an unsigned.
// When storing out scalable vectors we bail out for now, since the code
// below currently only works for constant strides.
TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
(SizeInBits.getFixedSize() >> 32) != 0)
return LegalStoreKind::None;
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided store. If we have something else, it's a
// random store we can't handle.
const SCEVAddRecExpr *StoreEv =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
return LegalStoreKind::None;
// Check to see if we have a constant stride.
if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
return LegalStoreKind::None;
// See if the store can be turned into a memset.
// If the stored value is a byte-wise value (like i32 -1), then it may be
// turned into a memset of i8 -1, assuming that all the consecutive bytes
// are stored. A store of i32 0x01020304 can never be turned into a memset,
// but it can be turned into memset_pattern if the target supports it.
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
// Note: memset and memset_pattern on unordered-atomic is yet not supported
bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
// If we're allowed to form a memset, and the stored value would be
// acceptable for memset, use it.
if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
// Verify that the stored value is loop invariant. If not, we can't
// promote the memset.
CurLoop->isLoopInvariant(SplatValue)) {
// It looks like we can use SplatValue.
return LegalStoreKind::Memset;
}
if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
// Don't create memset_pattern16s with address spaces.
StorePtr->getType()->getPointerAddressSpace() == 0 &&
getMemSetPatternValue(StoredVal, DL)) {
// It looks like we can use PatternValue!
return LegalStoreKind::MemsetPattern;
}
// Otherwise, see if the store can be turned into a memcpy.
if (HasMemcpy && !DisableLIRP::Memcpy) {
// Check to see if the stride matches the size of the store. If so, then we
// know that every byte is touched in the loop.
APInt Stride = getStoreStride(StoreEv);
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
if (StoreSize != Stride && StoreSize != -Stride)
return LegalStoreKind::None;
// The store must be feeding a non-volatile load.
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
// Only allow non-volatile loads
if (!LI || LI->isVolatile())
return LegalStoreKind::None;
// Only allow simple or unordered-atomic loads
if (!LI->isUnordered())
return LegalStoreKind::None;
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided load. If we have something else, it's a
// random load we can't handle.
const SCEVAddRecExpr *LoadEv =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
return LegalStoreKind::None;
// The store and load must share the same stride.
if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
return LegalStoreKind::None;
// Success. This store can be converted into a memcpy.
UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
: LegalStoreKind::Memcpy;
}
// This store can't be transformed into a memset/memcpy.
return LegalStoreKind::None;
}
void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
StoreRefsForMemset.clear();
StoreRefsForMemsetPattern.clear();
StoreRefsForMemcpy.clear();
for (Instruction &I : *BB) {
StoreInst *SI = dyn_cast<StoreInst>(&I);
if (!SI)
continue;
// Make sure this is a strided store with a constant stride.
switch (isLegalStore(SI)) {
case LegalStoreKind::None:
// Nothing to do
break;
case LegalStoreKind::Memset: {
// Find the base pointer.
Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
StoreRefsForMemset[Ptr].push_back(SI);
} break;
case LegalStoreKind::MemsetPattern: {
// Find the base pointer.
Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
StoreRefsForMemsetPattern[Ptr].push_back(SI);
} break;
case LegalStoreKind::Memcpy:
case LegalStoreKind::UnorderedAtomicMemcpy:
StoreRefsForMemcpy.push_back(SI);
break;
default:
assert(false && "unhandled return value");
break;
}
}
}
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count. This block is known to be in the current
/// loop and not in any subloops.
bool LoopIdiomRecognize::runOnLoopBlock(
BasicBlock *BB, const SCEV *BECount,
SmallVectorImpl<BasicBlock *> &ExitBlocks) {
// We can only promote stores in this block if they are unconditionally
// executed in the loop. For a block to be unconditionally executed, it has
// to dominate all the exit blocks of the loop. Verify this now.
for (BasicBlock *ExitBlock : ExitBlocks)
if (!DT->dominates(BB, ExitBlock))
return false;
bool MadeChange = false;
// Look for store instructions, which may be optimized to memset/memcpy.
collectStores(BB);
// Look for a single store or sets of stores with a common base, which can be
// optimized into a memset (memset_pattern). The latter most commonly happens
// with structs and handunrolled loops.
for (auto &SL : StoreRefsForMemset)
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
for (auto &SL : StoreRefsForMemsetPattern)
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
// Optimize the store into a memcpy, if it feeds an similarly strided load.
for (auto &SI : StoreRefsForMemcpy)
MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
MadeChange |= processLoopMemIntrinsic<MemSetInst>(
BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
return MadeChange;
}
/// See if this store(s) can be promoted to a memset.
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
const SCEV *BECount, ForMemset For) {
// Try to find consecutive stores that can be transformed into memsets.
SetVector<StoreInst *> Heads, Tails;
SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
// Do a quadratic search on all of the given stores and find
// all of the pairs of stores that follow each other.
SmallVector<unsigned, 16> IndexQueue;
for (unsigned i = 0, e = SL.size(); i < e; ++i) {
assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
Value *FirstStoredVal = SL[i]->getValueOperand();
Value *FirstStorePtr = SL[i]->getPointerOperand();
const SCEVAddRecExpr *FirstStoreEv =
cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
APInt FirstStride = getStoreStride(FirstStoreEv);
unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
// See if we can optimize just this store in isolation.
if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
Heads.insert(SL[i]);
continue;
}
Value *FirstSplatValue = nullptr;
Constant *FirstPatternValue = nullptr;
if (For == ForMemset::Yes)
FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
else
FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
assert((FirstSplatValue || FirstPatternValue) &&
"Expected either splat value or pattern value.");
IndexQueue.clear();
// If a store has multiple consecutive store candidates, search Stores
// array according to the sequence: from i+1 to e, then from i-1 to 0.
// This is because usually pairing with immediate succeeding or preceding
// candidate create the best chance to find memset opportunity.
unsigned j = 0;
for (j = i + 1; j < e; ++j)
IndexQueue.push_back(j);
for (j = i; j > 0; --j)
IndexQueue.push_back(j - 1);
for (auto &k : IndexQueue) {
assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
Value *SecondStorePtr = SL[k]->getPointerOperand();
const SCEVAddRecExpr *SecondStoreEv =
cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
APInt SecondStride = getStoreStride(SecondStoreEv);
if (FirstStride != SecondStride)
continue;
Value *SecondStoredVal = SL[k]->getValueOperand();
Value *SecondSplatValue = nullptr;
Constant *SecondPatternValue = nullptr;
if (For == ForMemset::Yes)
SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
else
SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
assert((SecondSplatValue || SecondPatternValue) &&
"Expected either splat value or pattern value.");
if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
if (For == ForMemset::Yes) {
if (isa<UndefValue>(FirstSplatValue))
FirstSplatValue = SecondSplatValue;
if (FirstSplatValue != SecondSplatValue)
continue;
} else {
if (isa<UndefValue>(FirstPatternValue))
FirstPatternValue = SecondPatternValue;
if (FirstPatternValue != SecondPatternValue)
continue;
}
Tails.insert(SL[k]);
Heads.insert(SL[i]);
ConsecutiveChain[SL[i]] = SL[k];
break;
}
}
}
// We may run into multiple chains that merge into a single chain. We mark the
// stores that we transformed so that we don't visit the same store twice.
SmallPtrSet<Value *, 16> TransformedStores;
bool Changed = false;
// For stores that start but don't end a link in the chain:
for (StoreInst *I : Heads) {
if (Tails.count(I))
continue;
// We found a store instr that starts a chain. Now follow the chain and try
// to transform it.
SmallPtrSet<Instruction *, 8> AdjacentStores;
StoreInst *HeadStore = I;
unsigned StoreSize = 0;
// Collect the chain into a list.
while (Tails.count(I) || Heads.count(I)) {
if (TransformedStores.count(I))
break;
AdjacentStores.insert(I);
StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
// Move to the next value in the chain.
I = ConsecutiveChain[I];
}
Value *StoredVal = HeadStore->getValueOperand();
Value *StorePtr = HeadStore->getPointerOperand();
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
APInt Stride = getStoreStride(StoreEv);
// Check to see if the stride matches the size of the stores. If so, then
// we know that every byte is touched in the loop.
if (StoreSize != Stride && StoreSize != -Stride)
continue;
bool IsNegStride = StoreSize == -Stride;
Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
MaybeAlign(HeadStore->getAlignment()),
StoredVal, HeadStore, AdjacentStores, StoreEv,
BECount, IsNegStride)) {
TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
Changed = true;
}
}
return Changed;
}
/// processLoopMemIntrinsic - Template function for calling different processor
/// functions based on mem instrinsic type.
template <typename MemInst>
bool LoopIdiomRecognize::processLoopMemIntrinsic(
BasicBlock *BB,
bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
const SCEV *BECount) {
bool MadeChange = false;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *Inst = &*I++;
// Look for memory instructions, which may be optimized to a larger one.
if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
WeakTrackingVH InstPtr(&*I);
if (!(this->*Processor)(MI, BECount))
continue;
MadeChange = true;
// If processing the instruction invalidated our iterator, start over from
// the top of the block.
if (!InstPtr)
I = BB->begin();
}
}
return MadeChange;
}
/// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
const SCEV *BECount) {
// We can only handle non-volatile memcpys with a constant size.
if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
return false;
// If we're not allowed to hack on memcpy, we fail.
if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
return false;
Value *Dest = MCI->getDest();
Value *Source = MCI->getSource();
if (!Dest || !Source)
return false;
// See if the load and store pointer expressions are AddRec like {base,+,1} on
// the current loop, which indicates a strided load and store. If we have
// something else, it's a random load or store we can't handle.
const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
return false;
const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
return false;
// Reject memcpys that are so large that they overflow an unsigned.
uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
if ((SizeInBytes >> 32) != 0)
return false;
// Check if the stride matches the size of the memcpy. If so, then we know
// that every byte is touched in the loop.
const SCEVConstant *ConstStoreStride =
dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
const SCEVConstant *ConstLoadStride =
dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
if (!ConstStoreStride || !ConstLoadStride)
return false;
APInt StoreStrideValue = ConstStoreStride->getAPInt();
APInt LoadStrideValue = ConstLoadStride->getAPInt();
// Huge stride value - give up
if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
return false;
if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
<< ore::NV("Inst", "memcpy") << " in "
<< ore::NV("Function", MCI->getFunction())
<< " function will not be hoisted: "
<< ore::NV("Reason", "memcpy size is not equal to stride");
});
return false;
}
int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
// Check if the load stride matches the store stride.
if (StoreStrideInt != LoadStrideInt)
return false;
return processLoopStoreOfLoopLoad(
Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
BECount);
}
/// processLoopMemSet - See if this memset can be promoted to a large memset.
bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
const SCEV *BECount) {
// We can only handle non-volatile memsets.
if (MSI->isVolatile())
return false;
// If we're not allowed to hack on memset, we fail.
if (!HasMemset || DisableLIRP::Memset)
return false;
Value *Pointer = MSI->getDest();
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided store. If we have something else, it's a
// random store we can't handle.
const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
if (!Ev || Ev->getLoop() != CurLoop)
return false;
if (!Ev->isAffine()) {
LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n");
return false;
}
const SCEV *PointerStrideSCEV = Ev->getOperand(1);
const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
if (!PointerStrideSCEV || !MemsetSizeSCEV)
return false;
bool IsNegStride = false;
const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
if (IsConstantSize) {
// Memset size is constant.
// Check if the pointer stride matches the memset size. If so, then
// we know that every byte is touched in the loop.
LLVM_DEBUG(dbgs() << " memset size is constant\n");
uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
if (!ConstStride)
return false;
APInt Stride = ConstStride->getAPInt();
if (SizeInBytes != Stride && SizeInBytes != -Stride)
return false;
IsNegStride = SizeInBytes == -Stride;
} else {
// Memset size is non-constant.
// Check if the pointer stride matches the memset size.
// To be conservative, the pass would not promote pointers that aren't in
// address space zero. Also, the pass only handles memset length and stride
// that are invariant for the top level loop.
LLVM_DEBUG(dbgs() << " memset size is non-constant\n");
if (Pointer->getType()->getPointerAddressSpace() != 0) {
LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "
<< "abort\n");
return false;
}
if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "
<< "abort\n");
return false;
}
// Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
IsNegStride = PointerStrideSCEV->isNonConstantNegative();
const SCEV *PositiveStrideSCEV =
IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
: PointerStrideSCEV;
LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
<< " PositiveStrideSCEV: " << *PositiveStrideSCEV
<< "\n");
if (PositiveStrideSCEV != MemsetSizeSCEV) {
// TODO: folding can be done to the SCEVs
// The folding is to fold expressions that is covered by the loop guard
// at loop entry. After the folding, compare again and proceed
// optimization if equal.
LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n");
return false;
}
}
// Verify that the memset value is loop invariant. If not, we can't promote
// the memset.
Value *SplatValue = MSI->getValue();
if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
return false;
SmallPtrSet<Instruction *, 1> MSIs;
MSIs.insert(MSI);
return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
MaybeAlign(MSI->getDestAlignment()),
SplatValue, MSI, MSIs, Ev, BECount,
IsNegStride, /*IsLoopMemset=*/true);
}
/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access. The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
static bool
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
const SCEV *BECount, const SCEV *StoreSizeSCEV,
AliasAnalysis &AA,
SmallPtrSetImpl<Instruction *> &IgnoredInsts) {