forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryBasicBlock.cpp
620 lines (536 loc) · 18.5 KB
/
BinaryBasicBlock.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//===--- BinaryBasicBlock.cpp - Interface for assembly-level basic block --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Errc.h"
#define DEBUG_TYPE "bolt"
namespace llvm {
namespace bolt {
constexpr uint32_t BinaryBasicBlock::INVALID_OFFSET;
bool operator<(const BinaryBasicBlock &LHS, const BinaryBasicBlock &RHS) {
return LHS.Index < RHS.Index;
}
bool BinaryBasicBlock::hasCFG() const { return getParent()->hasCFG(); }
bool BinaryBasicBlock::isEntryPoint() const {
return getParent()->isEntryPoint(*this);
}
bool BinaryBasicBlock::hasInstructions() const {
return getParent()->hasInstructions();
}
bool BinaryBasicBlock::hasJumpTable() const {
const MCInst *Inst = getLastNonPseudoInstr();
const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
return (JT != nullptr);
}
void BinaryBasicBlock::adjustNumPseudos(const MCInst &Inst, int Sign) {
BinaryContext &BC = Function->getBinaryContext();
if (BC.MIB->isPseudo(Inst))
NumPseudos += Sign;
}
BinaryBasicBlock::iterator BinaryBasicBlock::getFirstNonPseudo() {
const BinaryContext &BC = Function->getBinaryContext();
for (auto II = Instructions.begin(), E = Instructions.end(); II != E; ++II) {
if (!BC.MIB->isPseudo(*II))
return II;
}
return end();
}
BinaryBasicBlock::reverse_iterator BinaryBasicBlock::getLastNonPseudo() {
const BinaryContext &BC = Function->getBinaryContext();
for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E;
++RII) {
if (!BC.MIB->isPseudo(*RII))
return RII;
}
return rend();
}
bool BinaryBasicBlock::validateSuccessorInvariants() {
const MCInst *Inst = getLastNonPseudoInstr();
const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr;
BinaryContext &BC = Function->getBinaryContext();
bool Valid = true;
if (JT) {
// Note: for now we assume that successors do not reference labels from
// any overlapping jump tables. We only look at the entries for the jump
// table that is referenced at the last instruction.
const auto Range = JT->getEntriesForAddress(BC.MIB->getJumpTable(*Inst));
const std::vector<const MCSymbol *> Entries(
std::next(JT->Entries.begin(), Range.first),
std::next(JT->Entries.begin(), Range.second));
std::set<const MCSymbol *> UniqueSyms(Entries.begin(), Entries.end());
for (BinaryBasicBlock *Succ : Successors) {
auto Itr = UniqueSyms.find(Succ->getLabel());
if (Itr != UniqueSyms.end()) {
UniqueSyms.erase(Itr);
} else {
// Work on the assumption that jump table blocks don't
// have a conditional successor.
Valid = false;
errs() << "BOLT-WARNING: Jump table successor " << Succ->getName()
<< " not contained in the jump table.\n";
}
}
// If there are any leftover entries in the jump table, they
// must be one of the function end labels.
if (Valid) {
for (const MCSymbol *Sym : UniqueSyms) {
Valid &= (Sym == Function->getFunctionEndLabel() ||
Sym == Function->getFunctionColdEndLabel());
if (!Valid) {
errs() << "BOLT-WARNING: Jump table contains illegal entry: "
<< Sym->getName() << "\n";
}
}
}
} else {
// Unknown control flow.
if (Inst && BC.MIB->isIndirectBranch(*Inst))
return true;
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
switch (Successors.size()) {
case 0:
Valid = !CondBranch && !UncondBranch;
break;
case 1: {
const bool HasCondBlock =
CondBranch && Function->getBasicBlockForLabel(
BC.MIB->getTargetSymbol(*CondBranch));
Valid = !CondBranch || !HasCondBlock;
break;
}
case 2:
Valid = (CondBranch &&
(TBB == getConditionalSuccessor(true)->getLabel() &&
((!UncondBranch && !FBB) ||
(UncondBranch &&
FBB == getConditionalSuccessor(false)->getLabel()))));
break;
}
}
}
if (!Valid) {
errs() << "BOLT-WARNING: CFG invalid in " << *getFunction() << " @ "
<< getName() << "\n";
if (JT) {
errs() << "Jump Table instruction addr = 0x"
<< Twine::utohexstr(BC.MIB->getJumpTable(*Inst)) << "\n";
JT->print(errs());
}
getFunction()->dump();
}
return Valid;
}
BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label) const {
if (!Label && succ_size() == 1)
return *succ_begin();
for (BinaryBasicBlock *BB : successors()) {
if (BB->getLabel() == Label)
return BB;
}
return nullptr;
}
BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label,
BinaryBranchInfo &BI) const {
auto BIIter = branch_info_begin();
for (BinaryBasicBlock *BB : successors()) {
if (BB->getLabel() == Label) {
BI = *BIIter;
return BB;
}
++BIIter;
}
return nullptr;
}
BinaryBasicBlock *BinaryBasicBlock::getLandingPad(const MCSymbol *Label) const {
for (BinaryBasicBlock *BB : landing_pads()) {
if (BB->getLabel() == Label)
return BB;
}
return nullptr;
}
int32_t BinaryBasicBlock::getCFIStateAtInstr(const MCInst *Instr) const {
assert(
getFunction()->getState() >= BinaryFunction::State::CFG &&
"can only calculate CFI state when function is in or past the CFG state");
const BinaryFunction::CFIInstrMapType &FDEProgram =
getFunction()->getFDEProgram();
// Find the last CFI preceding Instr in this basic block.
const MCInst *LastCFI = nullptr;
bool InstrSeen = (Instr == nullptr);
for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E;
++RII) {
if (!InstrSeen) {
InstrSeen = (&*RII == Instr);
continue;
}
if (Function->getBinaryContext().MIB->isCFI(*RII)) {
LastCFI = &*RII;
break;
}
}
assert(InstrSeen && "instruction expected in basic block");
// CFI state is the same as at basic block entry point.
if (!LastCFI)
return getCFIState();
// Fold all RememberState/RestoreState sequences, such as for:
//
// [ CFI #(K-1) ]
// RememberState (#K)
// ....
// RestoreState
// RememberState
// ....
// RestoreState
// [ GNU_args_size ]
// RememberState
// ....
// RestoreState <- LastCFI
//
// we return K - the most efficient state to (re-)generate.
int64_t State = LastCFI->getOperand(0).getImm();
while (State >= 0 &&
FDEProgram[State].getOperation() == MCCFIInstruction::OpRestoreState) {
int32_t Depth = 1;
--State;
assert(State >= 0 && "first CFI cannot be RestoreState");
while (Depth && State >= 0) {
const MCCFIInstruction &CFIInstr = FDEProgram[State];
if (CFIInstr.getOperation() == MCCFIInstruction::OpRestoreState) {
++Depth;
} else if (CFIInstr.getOperation() == MCCFIInstruction::OpRememberState) {
--Depth;
}
--State;
}
assert(Depth == 0 && "unbalanced RememberState/RestoreState stack");
// Skip any GNU_args_size.
while (State >= 0 && FDEProgram[State].getOperation() ==
MCCFIInstruction::OpGnuArgsSize) {
--State;
}
}
assert((State + 1 >= 0) && "miscalculated CFI state");
return State + 1;
}
void BinaryBasicBlock::addSuccessor(BinaryBasicBlock *Succ, uint64_t Count,
uint64_t MispredictedCount) {
Successors.push_back(Succ);
BranchInfo.push_back({Count, MispredictedCount});
Succ->Predecessors.push_back(this);
}
void BinaryBasicBlock::replaceSuccessor(BinaryBasicBlock *Succ,
BinaryBasicBlock *NewSucc,
uint64_t Count,
uint64_t MispredictedCount) {
Succ->removePredecessor(this, /*Multiple=*/false);
auto I = succ_begin();
auto BI = BranchInfo.begin();
for (; I != succ_end(); ++I) {
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
if (*I == Succ)
break;
++BI;
}
assert(I != succ_end() && "no such successor!");
*I = NewSucc;
*BI = BinaryBranchInfo{Count, MispredictedCount};
NewSucc->addPredecessor(this);
}
void BinaryBasicBlock::removeAllSuccessors() {
for (BinaryBasicBlock *SuccessorBB : successors()) {
SuccessorBB->removePredecessor(this);
}
Successors.clear();
BranchInfo.clear();
}
void BinaryBasicBlock::removeSuccessor(BinaryBasicBlock *Succ) {
Succ->removePredecessor(this, /*Multiple=*/false);
auto I = succ_begin();
auto BI = BranchInfo.begin();
for (; I != succ_end(); ++I) {
assert(BI != BranchInfo.end() && "missing BranchInfo entry");
if (*I == Succ)
break;
++BI;
}
assert(I != succ_end() && "no such successor!");
Successors.erase(I);
BranchInfo.erase(BI);
}
void BinaryBasicBlock::addPredecessor(BinaryBasicBlock *Pred) {
Predecessors.push_back(Pred);
}
void BinaryBasicBlock::removePredecessor(BinaryBasicBlock *Pred,
bool Multiple) {
// Note: the predecessor could be listed multiple times.
bool Erased = false;
for (auto PredI = Predecessors.begin(); PredI != Predecessors.end();) {
if (*PredI == Pred) {
Erased = true;
PredI = Predecessors.erase(PredI);
if (!Multiple)
return;
} else {
++PredI;
}
}
assert(Erased && "Pred is not a predecessor of this block!");
}
void BinaryBasicBlock::removeDuplicateConditionalSuccessor(MCInst *CondBranch) {
assert(succ_size() == 2 && Successors[0] == Successors[1] &&
"conditional successors expected");
BinaryBasicBlock *Succ = Successors[0];
const BinaryBranchInfo CondBI = BranchInfo[0];
const BinaryBranchInfo UncondBI = BranchInfo[1];
eraseInstruction(findInstruction(CondBranch));
Successors.clear();
BranchInfo.clear();
Successors.push_back(Succ);
uint64_t Count = COUNT_NO_PROFILE;
if (CondBI.Count != COUNT_NO_PROFILE && UncondBI.Count != COUNT_NO_PROFILE)
Count = CondBI.Count + UncondBI.Count;
BranchInfo.push_back({Count, 0});
}
void BinaryBasicBlock::adjustExecutionCount(double Ratio) {
auto adjustedCount = [&](uint64_t Count) -> uint64_t {
double NewCount = Count * Ratio;
if (!NewCount && Count && (Ratio > 0.0))
NewCount = 1;
return NewCount;
};
setExecutionCount(adjustedCount(getKnownExecutionCount()));
for (BinaryBranchInfo &BI : branch_info()) {
if (BI.Count != COUNT_NO_PROFILE)
BI.Count = adjustedCount(BI.Count);
if (BI.MispredictedCount != COUNT_INFERRED)
BI.MispredictedCount = adjustedCount(BI.MispredictedCount);
}
}
bool BinaryBasicBlock::analyzeBranch(const MCSymbol *&TBB, const MCSymbol *&FBB,
MCInst *&CondBranch,
MCInst *&UncondBranch) {
auto &MIB = Function->getBinaryContext().MIB;
return MIB->analyzeBranch(Instructions.begin(), Instructions.end(), TBB, FBB,
CondBranch, UncondBranch);
}
bool BinaryBasicBlock::isMacroOpFusionPair(const_iterator I) const {
auto &MIB = Function->getBinaryContext().MIB;
ArrayRef<MCInst> Insts = Instructions;
return MIB->isMacroOpFusionPair(Insts.slice(I - begin()));
}
BinaryBasicBlock::const_iterator
BinaryBasicBlock::getMacroOpFusionPair() const {
if (!Function->getBinaryContext().isX86())
return end();
if (getNumNonPseudos() < 2 || succ_size() != 2)
return end();
auto RI = getLastNonPseudo();
assert(RI != rend() && "cannot have an empty block with 2 successors");
BinaryContext &BC = Function->getBinaryContext();
// Skip instruction if it's an unconditional branch following
// a conditional one.
if (BC.MIB->isUnconditionalBranch(*RI))
++RI;
if (!BC.MIB->isConditionalBranch(*RI))
return end();
// Start checking with instruction preceding the conditional branch.
++RI;
if (RI == rend())
return end();
auto II = std::prev(RI.base()); // convert to a forward iterator
if (isMacroOpFusionPair(II))
return II;
return end();
}
MCInst *BinaryBasicBlock::getTerminatorBefore(MCInst *Pos) {
BinaryContext &BC = Function->getBinaryContext();
auto Itr = rbegin();
bool Check = Pos ? false : true;
MCInst *FirstTerminator = nullptr;
while (Itr != rend()) {
if (!Check) {
if (&*Itr == Pos)
Check = true;
++Itr;
continue;
}
if (BC.MIB->isTerminator(*Itr))
FirstTerminator = &*Itr;
++Itr;
}
return FirstTerminator;
}
bool BinaryBasicBlock::hasTerminatorAfter(MCInst *Pos) {
BinaryContext &BC = Function->getBinaryContext();
auto Itr = rbegin();
while (Itr != rend()) {
if (&*Itr == Pos)
return false;
if (BC.MIB->isTerminator(*Itr))
return true;
++Itr;
}
return false;
}
bool BinaryBasicBlock::swapConditionalSuccessors() {
if (succ_size() != 2)
return false;
std::swap(Successors[0], Successors[1]);
std::swap(BranchInfo[0], BranchInfo[1]);
return true;
}
void BinaryBasicBlock::addBranchInstruction(const BinaryBasicBlock *Successor) {
assert(isSuccessor(Successor));
BinaryContext &BC = Function->getBinaryContext();
MCInst NewInst;
std::unique_lock<std::shared_timed_mutex> Lock(BC.CtxMutex);
BC.MIB->createUncondBranch(NewInst, Successor->getLabel(), BC.Ctx.get());
Instructions.emplace_back(std::move(NewInst));
}
void BinaryBasicBlock::addTailCallInstruction(const MCSymbol *Target) {
BinaryContext &BC = Function->getBinaryContext();
MCInst NewInst;
BC.MIB->createTailCall(NewInst, Target, BC.Ctx.get());
Instructions.emplace_back(std::move(NewInst));
}
uint32_t BinaryBasicBlock::getNumCalls() const {
uint32_t N = 0;
BinaryContext &BC = Function->getBinaryContext();
for (const MCInst &Instr : Instructions) {
if (BC.MIB->isCall(Instr))
++N;
}
return N;
}
uint32_t BinaryBasicBlock::getNumPseudos() const {
#ifndef NDEBUG
BinaryContext &BC = Function->getBinaryContext();
uint32_t N = 0;
for (const MCInst &Instr : Instructions) {
if (BC.MIB->isPseudo(Instr))
++N;
}
if (N != NumPseudos) {
errs() << "BOLT-ERROR: instructions for basic block " << getName()
<< " in function " << *Function << ": calculated pseudos " << N
<< ", set pseudos " << NumPseudos << ", size " << size() << '\n';
llvm_unreachable("pseudos mismatch");
}
#endif
return NumPseudos;
}
ErrorOr<std::pair<double, double>>
BinaryBasicBlock::getBranchStats(const BinaryBasicBlock *Succ) const {
if (Function->hasValidProfile()) {
uint64_t TotalCount = 0;
uint64_t TotalMispreds = 0;
for (const BinaryBranchInfo &BI : BranchInfo) {
if (BI.Count != COUNT_NO_PROFILE) {
TotalCount += BI.Count;
TotalMispreds += BI.MispredictedCount;
}
}
if (TotalCount > 0) {
auto Itr = std::find(Successors.begin(), Successors.end(), Succ);
assert(Itr != Successors.end());
const BinaryBranchInfo &BI = BranchInfo[Itr - Successors.begin()];
if (BI.Count && BI.Count != COUNT_NO_PROFILE) {
if (TotalMispreds == 0)
TotalMispreds = 1;
return std::make_pair(double(BI.Count) / TotalCount,
double(BI.MispredictedCount) / TotalMispreds);
}
}
}
return make_error_code(llvm::errc::result_out_of_range);
}
void BinaryBasicBlock::dump() const {
BinaryContext &BC = Function->getBinaryContext();
if (Label)
outs() << Label->getName() << ":\n";
BC.printInstructions(outs(), Instructions.begin(), Instructions.end(),
getOffset());
outs() << "preds:";
for (auto itr = pred_begin(); itr != pred_end(); ++itr) {
outs() << " " << (*itr)->getName();
}
outs() << "\nsuccs:";
for (auto itr = succ_begin(); itr != succ_end(); ++itr) {
outs() << " " << (*itr)->getName();
}
outs() << "\n";
}
uint64_t BinaryBasicBlock::estimateSize(const MCCodeEmitter *Emitter) const {
return Function->getBinaryContext().computeCodeSize(begin(), end(), Emitter);
}
BinaryBasicBlock::BinaryBranchInfo &
BinaryBasicBlock::getBranchInfo(const BinaryBasicBlock &Succ) {
auto BI = branch_info_begin();
for (BinaryBasicBlock *BB : successors()) {
if (&Succ == BB)
return *BI;
++BI;
}
llvm_unreachable("Invalid successor");
return *BI;
}
BinaryBasicBlock::BinaryBranchInfo &
BinaryBasicBlock::getBranchInfo(const MCSymbol *Label) {
auto BI = branch_info_begin();
for (BinaryBasicBlock *BB : successors()) {
if (BB->getLabel() == Label)
return *BI;
++BI;
}
llvm_unreachable("Invalid successor");
return *BI;
}
BinaryBasicBlock *BinaryBasicBlock::splitAt(iterator II) {
assert(II != end() && "expected iterator pointing to instruction");
BinaryBasicBlock *NewBlock = getFunction()->addBasicBlock(0);
// Adjust successors/predecessors and propagate the execution count.
moveAllSuccessorsTo(NewBlock);
addSuccessor(NewBlock, getExecutionCount(), 0);
// Set correct CFI state for the new block.
NewBlock->setCFIState(getCFIStateAtInstr(&*II));
// Move instructions over.
adjustNumPseudos(II, end(), -1);
NewBlock->addInstructions(II, end());
Instructions.erase(II, end());
return NewBlock;
}
void BinaryBasicBlock::updateOutputValues(const MCAsmLayout &Layout) {
if (!LocSyms)
return;
const uint64_t BBAddress = getOutputAddressRange().first;
const uint64_t BBOffset = Layout.getSymbolOffset(*getLabel());
for (const auto &LocSymKV : *LocSyms) {
const uint32_t InputFunctionOffset = LocSymKV.first;
const uint32_t OutputOffset = static_cast<uint32_t>(
Layout.getSymbolOffset(*LocSymKV.second) - BBOffset);
getOffsetTranslationTable().emplace_back(
std::make_pair(OutputOffset, InputFunctionOffset));
// Update reverse (relative to BAT) address lookup table for function.
if (getFunction()->requiresAddressTranslation()) {
getFunction()->getInputOffsetToAddressMap().emplace(
std::make_pair(InputFunctionOffset, OutputOffset + BBAddress));
}
}
LocSyms.reset(nullptr);
}
} // namespace bolt
} // namespace llvm