# [145. 二叉树的后序遍历](https://leetcode.cn/problems/binary-tree-postorder-traversal) [English Version](/solution/0100-0199/0145.Binary%20Tree%20Postorder%20Traversal/README_EN.md) ## 题目描述 <!-- 这里写题目描述 --> <p>给你一棵二叉树的根节点 <code>root</code> ,返回其节点值的 <strong>后序遍历 </strong>。</p> <p> </p> <p><strong>示例 1:</strong></p> <img alt="" src="https://cdn.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0145.Binary%20Tree%20Postorder%20Traversal/images/pre1.jpg" style="width: 127px; height: 200px;" /> <pre> <strong>输入:</strong>root = [1,null,2,3] <strong>输出:</strong>[3,2,1] </pre> <p><strong>示例 2:</strong></p> <pre> <strong>输入:</strong>root = [] <strong>输出:</strong>[] </pre> <p><strong>示例 3:</strong></p> <pre> <strong>输入:</strong>root = [1] <strong>输出:</strong>[1] </pre> <p> </p> <p><strong>提示:</strong></p> <ul> <li>树中节点的数目在范围 <code>[0, 100]</code> 内</li> <li><code>-100 <= Node.val <= 100</code></li> </ul> <p> </p> <p><strong>进阶:</strong>递归算法很简单,你可以通过迭代算法完成吗?</p> ## 解法 <!-- 这里可写通用的实现逻辑 --> **1. 递归遍历** 先递归左右子树,再访问根节点。 **2. 栈实现非递归遍历** 非递归的思路如下: 先序遍历的顺序是:头、左、右,如果我们改变左右孩子的顺序,就能将顺序变成:头、右、左。 我们先不打印头节点,而是存放到另一个收集栈 ans 中,最后遍历结束,输出收集栈元素,即是后序遍历:左、右、头。收集栈是为了实现结果列表的逆序。我们也可以直接使用链表,每次插入元素时,放在头部,最后直接返回链表即可,无需进行逆序。 **3. Morris 实现后序遍历** Morris 遍历无需使用栈,空间复杂度为 O(1)。核心思想是: 遍历二叉树节点, 1. 若当前节点 root 的右子树为空,**将当前节点值添加至结果列表 ans** 中,并将当前节点更新为 `root.left` 2. 若当前节点 root 的右子树不为空,找到右子树的最左节点 next(也即是 root 节点在中序遍历下的后继节点): - 若后继节点 next 的左子树为空,**将当前节点值添加至结果列表 ans** 中,然后将后继节点的左子树指向当前节点 root,并将当前节点更新为 `root.right`。 - 若后继节点 next 的左子树不为空,将后继节点左子树指向空(即解除 next 与 root 的指向关系),并将当前节点更新为 `root.left`。 3. 循环以上步骤,直至二叉树节点为空,遍历结束。 4. 最后返回结果列表的逆序即可。 > Morris 后序遍历跟 Morris 前序遍历思路一致,只是将前序的“根左右”变为“根右左”,最后逆序结果即可变成“左右根”。 <!-- tabs:start --> ### **Python3** <!-- 这里可写当前语言的特殊实现逻辑 --> 递归: ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]: def dfs(root): if root is None: return dfs(root.left) dfs(root.right) nonlocal ans ans.append(root.val) ans = [] dfs(root) return ans ``` 栈实现非递归: ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]: ans = [] if root is None: return ans stk = [root] while stk: node = stk.pop() ans.append(node.val) if node.left: stk.append(node.left) if node.right: stk.append(node.right) return ans[::-1] ``` Morris 遍历: ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]: ans = [] while root: if root.right is None: ans.append(root.val) root = root.left else: next = root.right while next.left and next.left != root: next = next.left if next.left != root: ans.append(root.val) next.left = root root = root.right else: next.left = None root = root.left return ans[::-1] ``` ### **Java** <!-- 这里可写当前语言的特殊实现逻辑 --> 递归: ```java /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { private List<Integer> ans; public List<Integer> postorderTraversal(TreeNode root) { ans = new ArrayList<>(); dfs(root); return ans; } private void dfs(TreeNode root) { if (root == null) { return; } dfs(root.left); dfs(root.right); ans.add(root.val); } } ``` 栈实现非递归: ```java /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<Integer> postorderTraversal(TreeNode root) { LinkedList<Integer> ans = new LinkedList<>(); if (root == null) { return ans; } Deque<TreeNode> stk = new ArrayDeque<>(); stk.push(root); while (!stk.isEmpty()) { TreeNode node = stk.pop(); ans.addFirst(node.val); if (node.left != null) { stk.push(node.left); } if (node.right != null) { stk.push(node.right); } } return ans; } } ``` Morris 遍历: ```java /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<Integer> postorderTraversal(TreeNode root) { LinkedList<Integer> ans = new LinkedList<>(); while (root != null) { if (root.right == null) { ans.addFirst(root.val); root = root.left; } else { TreeNode next = root.right; while (next.left != null && next.left != root) { next = next.left; } if (next.left == null) { ans.addFirst(root.val); next.left = root; root = root.right; } else { next.left = null; root = root.left; } } } return ans; } } ``` ### **TypeScript** ```ts /** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function postorderTraversal(root: TreeNode | null): number[] { if (root == null) return []; let stack = []; let ans = []; let prev = null; while (root || stack.length) { while (root) { stack.push(root); root = root.left; } root = stack.pop(); if (!root.right || root.right == prev) { ans.push(root.val); prev = root; root = null; } else { stack.push(root); root = root.right; } } return ans; } ``` ```ts /** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function postorderTraversal(root: TreeNode | null): number[] { if (root == null) { return []; } const { val, left, right } = root; return [...postorderTraversal(left), ...postorderTraversal(right), val]; } ``` ```ts /** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function postorderTraversal(root: TreeNode | null): number[] { const res = []; while (root != null) { const { val, left, right } = root; if (right == null) { res.push(val); root = left; } else { let next = right; while (next.left != null && next.left != root) { next = next.left; } if (next.left == null) { res.push(val); next.left = root; root = right; } else { next.left = null; root = left; } } } return res.reverse(); } ``` ### **C++** ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<int> postorderTraversal(TreeNode* root) { vector<int> ans; while (root) { if (!root->right) { ans.push_back(root->val); root = root->left; } else { TreeNode* next = root->right; while (next->left && next->left != root) { next = next->left; } if (!next->left) { ans.push_back(root->val); next->left = root; root = root->right; } else { next->left = nullptr; root = root->left; } } } reverse(ans.begin(), ans.end()); return ans; } }; ``` ### **Go** ```go /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func postorderTraversal(root *TreeNode) []int { var ans []int for root != nil { if root.Right == nil { ans = append([]int{root.Val}, ans...) root = root.Left } else { next := root.Right for next.Left != nil && next.Left != root { next = next.Left } if next.Left == nil { ans = append([]int{root.Val}, ans...) next.Left = root root = root.Right } else { next.Left = nil root = root.Left } } } return ans } ``` ### **Rust** ```rust // Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) { if root.is_none() { return; } let node = root.as_ref().unwrap().borrow(); Self::dfs(&node.left, res); Self::dfs(&node.right, res); res.push(node.val); } pub fn postorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> { let mut res = vec![]; Self::dfs(&root, &mut res); res } } ``` ```rust // Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { pub fn postorder_traversal(mut root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> { let mut res = vec![]; let mut stack = vec![]; while root.is_some() || !stack.is_empty() { if root.is_some() { let next = root.as_mut().unwrap().borrow_mut().left.take(); stack.push(root); root = next; } else { root = stack.pop().unwrap(); let next = root.as_mut().unwrap().borrow_mut().right.take(); if next.is_some() { stack.push(root); } else { res.push(root.as_ref().unwrap().borrow().val); } root = next; } } res } } ``` ### **...** ``` ``` <!-- tabs:end -->