|
73 | 73 |
|
74 | 74 | ## Solutions
|
75 | 75 |
|
| 76 | +Because each edge has the same weight, the shortest path can be solution by using BFS, and the access of the point can be recorded by state compression. |
| 77 | + |
76 | 78 | <!-- tabs:start -->
|
77 | 79 |
|
78 | 80 | ### **Python3**
|
79 | 81 |
|
80 | 82 | ```python
|
81 |
| - |
| 83 | +class Solution: |
| 84 | + def shortestPathLength(self, graph: List[List[int]]) -> int: |
| 85 | + n = len(graph) |
| 86 | + dst = -1 ^ (-1 << n) |
| 87 | + |
| 88 | + q = deque() |
| 89 | + vis = [[False] * (1 << n) for _ in range(n)] |
| 90 | + for i in range(n): |
| 91 | + q.append((i, 1 << i, 0)) |
| 92 | + vis[i][1 << i] = True |
| 93 | + |
| 94 | + while q: |
| 95 | + u, state, dis = q.popleft() |
| 96 | + for v in graph[u]: |
| 97 | + nxt = state | (1 << v) |
| 98 | + if nxt == dst: |
| 99 | + return dis + 1 |
| 100 | + if not vis[v][nxt]: |
| 101 | + q.append((v, nxt, dis + 1)) |
| 102 | + vis[v][nxt] = True |
| 103 | + return 0 |
82 | 104 | ```
|
83 | 105 |
|
84 | 106 | ### **Java**
|
85 | 107 |
|
86 | 108 | ```java
|
| 109 | +class Solution { |
| 110 | + public int shortestPathLength(int[][] graph) { |
| 111 | + int n = graph.length; |
| 112 | + int dst = -1 ^ (-1 << n); |
| 113 | + |
| 114 | + Queue<Tuple> queue = new ArrayDeque<>(); |
| 115 | + boolean[][] vis = new boolean[n][1 << n]; |
| 116 | + for (int i = 0; i < n; i++) { |
| 117 | + queue.offer(new Tuple(i, 1 << i, 0)); |
| 118 | + vis[i][1 << i] = true; |
| 119 | + } |
| 120 | + |
| 121 | + while (!queue.isEmpty()) { |
| 122 | + Tuple t = queue.poll(); |
| 123 | + int u = t.u, state = t.state, dis = t.dis; |
| 124 | + for (int v : graph[u]) { |
| 125 | + int next = state | (1 << v); |
| 126 | + if (next == dst) { |
| 127 | + return dis + 1; |
| 128 | + } |
| 129 | + if (!vis[v][next]) { |
| 130 | + queue.offer(new Tuple(v, next, dis + 1)); |
| 131 | + vis[v][next] = true; |
| 132 | + } |
| 133 | + } |
| 134 | + } |
| 135 | + return 0; |
| 136 | + } |
| 137 | + |
| 138 | + private static class Tuple { |
| 139 | + int u; |
| 140 | + int state; |
| 141 | + int dis; |
| 142 | + |
| 143 | + public Tuple(int u, int state, int dis) { |
| 144 | + this.u = u; |
| 145 | + this.state = state; |
| 146 | + this.dis = dis; |
| 147 | + } |
| 148 | + } |
| 149 | +} |
| 150 | +``` |
87 | 151 |
|
| 152 | +### **Go** |
| 153 | + |
| 154 | +```go |
| 155 | +type tuple struct { |
| 156 | + u int |
| 157 | + state int |
| 158 | + dis int |
| 159 | +} |
| 160 | + |
| 161 | +func shortestPathLength(graph [][]int) int { |
| 162 | + n := len(graph) |
| 163 | + dst := -1 ^ (-1 << n) |
| 164 | + |
| 165 | + q := make([]tuple, 0) |
| 166 | + vis := make([][]bool, n) |
| 167 | + for i := 0; i < n; i++ { |
| 168 | + vis[i] = make([]bool, 1<<n) |
| 169 | + q = append(q, tuple{i, 1 << i, 0}) |
| 170 | + vis[i][1<<i] = true |
| 171 | + } |
| 172 | + |
| 173 | + for len(q) > 0 { |
| 174 | + t := q[0] |
| 175 | + q = q[1:] |
| 176 | + cur, state, dis := t.u, t.state, t.dis |
| 177 | + for _, v := range graph[cur] { |
| 178 | + next := state | (1 << v) |
| 179 | + if next == dst { |
| 180 | + return dis + 1 |
| 181 | + } |
| 182 | + if !vis[v][next] { |
| 183 | + q = append(q, tuple{v, next, dis + 1}) |
| 184 | + vis[v][next] = true |
| 185 | + } |
| 186 | + } |
| 187 | + } |
| 188 | + return 0 |
| 189 | +} |
88 | 190 | ```
|
89 | 191 |
|
90 | 192 | ### **...**
|
|
0 commit comments