Skip to content

Commit a45c493

Browse files
committed
feat: add solutions to lc problem: No.1409
No.1409.Queries on a Permutation With Key
1 parent 3558f4e commit a45c493

File tree

6 files changed

+555
-125
lines changed

6 files changed

+555
-125
lines changed

solution/1400-1499/1409.Queries on a Permutation With Key/README.md

+265-41
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,24 @@
5555

5656
<!-- 这里可写通用的实现逻辑 -->
5757

58-
题目数据规模不大,直接模拟即可。
58+
**方法一:模拟**
59+
60+
题目数据规模不大,可以直接模拟。
61+
62+
**方法一:树状数组**
63+
64+
树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:
65+
66+
1. **单点更新** `update(x, delta)`: 把序列 x 位置的数加上一个值 delta;
67+
1. **前缀和查询** `query(x)`:查询序列 `[1,...x]` 区间的区间和,即位置 x 的前缀和。
68+
69+
这两个操作的时间复杂度均为 `O(log n)`
70+
71+
树状数组最基本的功能就是求比某点 x 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。
72+
73+
比如给定数组 `a[5] = {2, 5, 3, 4, 1}`,求 `b[i] = 位置 i 左边小于等于 a[i] 的数的个数`。对于此例,`b[5] = {0, 1, 1, 2, 0}`
74+
75+
解决方案是直接遍历数组,每个位置先求出 `query(a[i])`,然后再修改树状数组 `update(a[i], 1)` 即可。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。
5976

6077
<!-- tabs:start -->
6178

@@ -66,13 +83,55 @@
6683
```python
6784
class Solution:
6885
def processQueries(self, queries: List[int], m: int) -> List[int]:
69-
nums = list(range(1, m + 1))
70-
res = []
71-
for num in queries:
72-
res.append(nums.index(num))
73-
nums.remove(num)
74-
nums.insert(0, num)
75-
return res
86+
p = list(range(1, m + 1))
87+
ans = []
88+
for v in queries:
89+
j = p.index(v)
90+
ans.append(j)
91+
p.pop(j)
92+
p.insert(0, v)
93+
return ans
94+
```
95+
96+
```python
97+
class BinaryIndexedTree:
98+
def __init__(self, n):
99+
self.n = n
100+
self.c = [0] * (n + 1)
101+
102+
@staticmethod
103+
def lowbit(x):
104+
return x & -x
105+
106+
def update(self, x, delta):
107+
while x <= self.n:
108+
self.c[x] += delta
109+
x += BinaryIndexedTree.lowbit(x)
110+
111+
def query(self, x):
112+
s = 0
113+
while x > 0:
114+
s += self.c[x]
115+
x -= BinaryIndexedTree.lowbit(x)
116+
return s
117+
118+
class Solution:
119+
def processQueries(self, queries: List[int], m: int) -> List[int]:
120+
n = len(queries)
121+
pos = [0] * (m + 1)
122+
tree = BinaryIndexedTree(m + n)
123+
for i in range(1, m + 1):
124+
pos[i] = n + i
125+
tree.update(n + i, 1)
126+
127+
ans = []
128+
for i, v in enumerate(queries):
129+
j = pos[v]
130+
tree.update(j, -1)
131+
ans.append(tree.query(j))
132+
pos[v] = n - i
133+
tree.update(n - i, 1)
134+
return ans
76135
```
77136

78137
### **Java**
@@ -82,18 +141,74 @@ class Solution:
82141
```java
83142
class Solution {
84143
public int[] processQueries(int[] queries, int m) {
85-
List<Integer> nums = new LinkedList<>();
86-
for (int i = 0; i < m; ++i) {
87-
nums.add(i + 1);
144+
List<Integer> p = new LinkedList<>();
145+
for (int i = 1; i <= m; ++i) {
146+
p.add(i);
88147
}
89-
int[] res = new int[queries.length];
148+
int[] ans = new int[queries.length];
90149
int i = 0;
91-
for (int num : queries) {
92-
res[i++] = nums.indexOf(num);
93-
nums.remove(Integer.valueOf(num));
94-
nums.add(0, num);
150+
for (int v : queries) {
151+
int j = p.indexOf(v);
152+
ans[i++] = j;
153+
p.remove(j);
154+
p.add(0, v);
155+
}
156+
return ans;
157+
}
158+
}
159+
```
160+
161+
```java
162+
class BinaryIndexedTree {
163+
private int n;
164+
private int[] c;
165+
166+
public BinaryIndexedTree(int n) {
167+
this.n = n;
168+
c = new int[n + 1];
169+
}
170+
171+
public void update(int x, int delta) {
172+
while (x <= n) {
173+
c[x] += delta;
174+
x += lowbit(x);
175+
}
176+
}
177+
178+
public int query(int x) {
179+
int s = 0;
180+
while (x > 0) {
181+
s += c[x];
182+
x -= lowbit(x);
183+
}
184+
return s;
185+
}
186+
187+
public static int lowbit(int x) {
188+
return x & -x;
189+
}
190+
}
191+
192+
class Solution {
193+
public int[] processQueries(int[] queries, int m) {
194+
int n = queries.length;
195+
BinaryIndexedTree tree = new BinaryIndexedTree(m + n);
196+
int[] pos = new int[m + 1];
197+
for (int i = 1; i <= m; ++i) {
198+
pos[i] = n + i;
199+
tree.update(n + i, 1);
200+
}
201+
int[] ans = new int[n];
202+
int k = 0;
203+
for (int i = 0; i < n; ++i) {
204+
int v = queries[i];
205+
int j = pos[v];
206+
tree.update(j, -1);
207+
ans[k++] = tree.query(j);
208+
pos[v] = n - i;
209+
tree.update(n - i, 1);
95210
}
96-
return res;
211+
return ans;
97212
}
98213
}
99214
```
@@ -104,24 +219,82 @@ class Solution {
104219
class Solution {
105220
public:
106221
vector<int> processQueries(vector<int>& queries, int m) {
107-
vector<int> nums(m);
108-
iota(nums.begin(), nums.end(), 1);
109-
vector<int> res;
110-
for (int num : queries)
222+
vector<int> p(m);
223+
iota(p.begin(), p.end(), 1);
224+
vector<int> ans;
225+
for (int v : queries)
111226
{
112-
int idx = -1;
227+
int j = 0;
113228
for (int i = 0; i < m; ++i)
114229
{
115-
if (nums[i] == num) {
116-
idx = i;
230+
if (p[i] == v)
231+
{
232+
j = i;
117233
break;
118234
}
119235
}
120-
res.push_back(idx);
121-
nums.erase(nums.begin() + idx);
122-
nums.insert(nums.begin(), num);
236+
ans.push_back(j);
237+
p.erase(p.begin() + j);
238+
p.insert(p.begin(), v);
239+
}
240+
return ans;
241+
}
242+
};
243+
```
244+
245+
```cpp
246+
class BinaryIndexedTree {
247+
public:
248+
int n;
249+
vector<int> c;
250+
251+
BinaryIndexedTree(int _n): n(_n), c(_n + 1){}
252+
253+
void update(int x, int delta) {
254+
while (x <= n)
255+
{
256+
c[x] += delta;
257+
x += lowbit(x);
258+
}
259+
}
260+
261+
int query(int x) {
262+
int s = 0;
263+
while (x > 0)
264+
{
265+
s += c[x];
266+
x -= lowbit(x);
267+
}
268+
return s;
269+
}
270+
271+
int lowbit(int x) {
272+
return x & -x;
273+
}
274+
};
275+
276+
class Solution {
277+
public:
278+
vector<int> processQueries(vector<int>& queries, int m) {
279+
int n = queries.size();
280+
vector<int> pos(m + 1);
281+
BinaryIndexedTree* tree = new BinaryIndexedTree(m + n);
282+
for (int i = 1; i <= m; ++i)
283+
{
284+
pos[i] = n + i;
285+
tree->update(n + i, 1);
286+
}
287+
vector<int> ans;
288+
for (int i = 0; i < n; ++i)
289+
{
290+
int v = queries[i];
291+
int j = pos[v];
292+
tree->update(j, -1);
293+
ans.push_back(tree->query(j));
294+
pos[v] = n - i;
295+
tree->update(n - i, 1);
123296
}
124-
return res;
297+
return ans;
125298
}
126299
};
127300
```
@@ -130,24 +303,75 @@ public:
130303

131304
```go
132305
func processQueries(queries []int, m int) []int {
133-
nums := make([]int, m)
134-
for i := 0; i < m; i++ {
135-
nums[i] = i + 1
306+
p := make([]int, m)
307+
for i := range p {
308+
p[i] = i + 1
136309
}
137-
var res []int
138-
for _, num := range queries {
139-
idx := -1
140-
for i := 0; i < m; i++ {
141-
if nums[i] == num {
142-
idx = i
310+
ans := []int{}
311+
for _, v := range queries {
312+
j := 0
313+
for i := range p {
314+
if p[i] == v {
315+
j = i
143316
break
144317
}
145318
}
146-
res = append(res, idx)
147-
nums = append(nums[:idx], nums[idx+1:]...)
148-
nums = append([]int{num}, nums...)
319+
ans = append(ans, j)
320+
p = append(p[:j], p[j+1:]...)
321+
p = append([]int{v}, p...)
322+
}
323+
return ans
324+
}
325+
```
326+
327+
```go
328+
type BinaryIndexedTree struct {
329+
n int
330+
c []int
331+
}
332+
333+
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
334+
c := make([]int, n+1)
335+
return &BinaryIndexedTree{n, c}
336+
}
337+
338+
func (this *BinaryIndexedTree) lowbit(x int) int {
339+
return x & -x
340+
}
341+
342+
func (this *BinaryIndexedTree) update(x, delta int) {
343+
for x <= this.n {
344+
this.c[x] += delta
345+
x += this.lowbit(x)
346+
}
347+
}
348+
349+
func (this *BinaryIndexedTree) query(x int) int {
350+
s := 0
351+
for x > 0 {
352+
s += this.c[x]
353+
x -= this.lowbit(x)
354+
}
355+
return s
356+
}
357+
358+
func processQueries(queries []int, m int) []int {
359+
n := len(queries)
360+
pos := make([]int, m+1)
361+
tree := newBinaryIndexedTree(m + n)
362+
for i := 1; i <= m; i++ {
363+
pos[i] = n + i
364+
tree.update(n+i, 1)
365+
}
366+
ans := []int{}
367+
for i, v := range queries {
368+
j := pos[v]
369+
tree.update(j, -1)
370+
ans = append(ans, tree.query(j))
371+
pos[v] = n - i
372+
tree.update(n-i, 1)
149373
}
150-
return res
374+
return ans
151375
}
152376
```
153377

0 commit comments

Comments
 (0)