|
39 | 39 |
|
40 | 40 | <!-- 这里可写通用的实现逻辑 -->
|
41 | 41 |
|
| 42 | +**方法一:数学** |
| 43 | + |
| 44 | +先统计 $[1,n]$ 范围内的质数个数,我们记为 $cnt$。然后求 $cnt$ 以及 $n-cnt$ 阶乘的乘积得到答案,注意取模操作。 |
| 45 | + |
| 46 | +这里我们用“埃氏筛”统计质数。 |
| 47 | + |
| 48 | +如果 $x$ 是质数,那么大于 $x$ 的 $x$ 的倍数 $2x$,$3x$,… 一定不是质数,因此我们可以从这里入手。 |
| 49 | + |
| 50 | +我们设 $primes[i]$ 表示数 $i$ 是不是质数,如果是质数则为 $true$,否则为 $false$。从小到大遍历每个数,如果这个数为质数,则将其所有的倍数都标记为合数(除了该质数本身),即 $false$,这样在运行结束的时候我们即能知道质数的个数。 |
| 51 | + |
| 52 | +时间复杂度 $O(nloglogn)$。 |
| 53 | + |
42 | 54 | <!-- tabs:start -->
|
43 | 55 |
|
44 | 56 | ### **Python3**
|
45 | 57 |
|
46 | 58 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
47 | 59 |
|
48 | 60 | ```python
|
49 |
| - |
| 61 | +class Solution: |
| 62 | + def numPrimeArrangements(self, n: int) -> int: |
| 63 | + def count(n): |
| 64 | + cnt = 0 |
| 65 | + primes = [True] * (n + 1) |
| 66 | + for i in range(2, n + 1): |
| 67 | + if primes[i]: |
| 68 | + cnt += 1 |
| 69 | + for j in range(i + i, n + 1, i): |
| 70 | + primes[j] = False |
| 71 | + return cnt |
| 72 | + |
| 73 | + cnt = count(n) |
| 74 | + ans = factorial(cnt) * factorial(n - cnt) |
| 75 | + return ans % (10**9 + 7) |
50 | 76 | ```
|
51 | 77 |
|
52 | 78 | ### **Java**
|
53 | 79 |
|
54 | 80 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
55 | 81 |
|
56 | 82 | ```java
|
| 83 | +class Solution { |
| 84 | + private static final int MOD = (int) 1e9 + 7; |
| 85 | + |
| 86 | + public int numPrimeArrangements(int n) { |
| 87 | + int cnt = count(n); |
| 88 | + long ans = f(cnt) * f(n - cnt); |
| 89 | + return (int) (ans % MOD); |
| 90 | + } |
| 91 | + |
| 92 | + private long f(int n) { |
| 93 | + long ans = 1; |
| 94 | + for (int i = 2; i <= n; ++i) { |
| 95 | + ans = (ans * i) % MOD; |
| 96 | + } |
| 97 | + return ans; |
| 98 | + } |
| 99 | + |
| 100 | + private int count(int n) { |
| 101 | + int cnt = 0; |
| 102 | + boolean[] primes = new boolean[n + 1]; |
| 103 | + Arrays.fill(primes, true); |
| 104 | + for (int i = 2; i <= n; ++i) { |
| 105 | + if (primes[i]) { |
| 106 | + ++cnt; |
| 107 | + for (int j = i + i; j <= n; j += i) { |
| 108 | + primes[j] = false; |
| 109 | + } |
| 110 | + } |
| 111 | + } |
| 112 | + return cnt; |
| 113 | + } |
| 114 | +} |
| 115 | +``` |
| 116 | + |
| 117 | +### **C++** |
| 118 | + |
| 119 | +```cpp |
| 120 | +using ll = long long; |
| 121 | +const int MOD = 1e9 + 7; |
| 122 | + |
| 123 | +class Solution { |
| 124 | +public: |
| 125 | + int numPrimeArrangements(int n) { |
| 126 | + int cnt = count(n); |
| 127 | + ll ans = f(cnt) * f(n - cnt); |
| 128 | + return (int) (ans % MOD); |
| 129 | + } |
| 130 | + |
| 131 | + ll f(int n) { |
| 132 | + ll ans = 1; |
| 133 | + for (int i = 2; i <= n; ++i) ans = (ans * i) % MOD; |
| 134 | + return ans; |
| 135 | + } |
| 136 | + |
| 137 | + int count(int n) { |
| 138 | + vector<bool> primes(n + 1, true); |
| 139 | + int cnt = 0; |
| 140 | + for (int i = 2; i <= n; ++i) |
| 141 | + { |
| 142 | + if (primes[i]) |
| 143 | + { |
| 144 | + ++cnt; |
| 145 | + for (int j = i + i; j <= n; j += i) primes[j] = false; |
| 146 | + } |
| 147 | + } |
| 148 | + return cnt; |
| 149 | + } |
| 150 | +}; |
| 151 | +``` |
57 | 152 |
|
| 153 | +### **Go** |
| 154 | +
|
| 155 | +```go |
| 156 | +func numPrimeArrangements(n int) int { |
| 157 | + count := func(n int) int { |
| 158 | + cnt := 0 |
| 159 | + primes := make([]bool, n+1) |
| 160 | + for i := range primes { |
| 161 | + primes[i] = true |
| 162 | + } |
| 163 | + for i := 2; i <= n; i++ { |
| 164 | + if primes[i] { |
| 165 | + cnt++ |
| 166 | + for j := i + i; j <= n; j += i { |
| 167 | + primes[j] = false |
| 168 | + } |
| 169 | + } |
| 170 | + } |
| 171 | + return cnt |
| 172 | + } |
| 173 | +
|
| 174 | + mod := int(1e9) + 7 |
| 175 | + f := func(n int) int { |
| 176 | + ans := 1 |
| 177 | + for i := 2; i <= n; i++ { |
| 178 | + ans = (ans * i) % mod |
| 179 | + } |
| 180 | + return ans |
| 181 | + } |
| 182 | +
|
| 183 | + cnt := count(n) |
| 184 | + ans := f(cnt) * f(n-cnt) |
| 185 | + return ans % mod |
| 186 | +} |
58 | 187 | ```
|
59 | 188 |
|
60 | 189 | ### **...**
|
|
0 commit comments